Bienvenue sur Laurentvidal.fr, la meilleure plateforme de questions-réponses pour trouver des réponses précises et rapides à toutes vos questions. Obtenez des réponses rapides à vos questions grâce à un réseau de professionnels expérimentés sur notre plateforme de questions-réponses. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines.

Bonjour, existe t'il deux nombres réels dont la somme est 15 et le produit est 4 ?

Sagot :

Aeneas

Bonjour,

On cherche (x,y) ∈ [tex]$\mathbb{R}$[/tex]² tels que :

x + y = 15  (Eq.1)

xy = 4    (Eq2.)

On a y = 15 - x   (Eq. 1)

on a donc x(15-x) = 4 (Eq.2)

Donc -x² + 15x - 4 = 0

Donc x² - 15x + 4 =0

On a Δ = [tex](-15)^2 - (4*4) = 225 - 16 = 209 >0[/tex]

Donc x² - 15x + 4 = 0 admet 2 solutions réelles :

[tex]x_1 = \frac{15 + \sqrt{209} }{2}[/tex] et [tex]x_2 = \frac{15-\sqrt{209} }{2}[/tex]

Pour [tex]x = x_1[/tex] on a [tex]y = x_2[/tex]

Pour [tex]x = x_2[/tex] on a [tex]y = x_1[/tex]

Merci d'utiliser notre plateforme. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Merci d'utiliser Laurentvidal.fr. Continuez à nous rendre visite pour trouver des réponses à vos questions.