Bienvenue sur Laurentvidal.fr, le site où vous trouverez les meilleures réponses de la part des experts. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines. Expérimentez la commodité de trouver des réponses précises à vos questions grâce à une communauté dévouée d'experts.

Bonjours, j'aurai besoin d'aide pour finir mon DM car je bug ... :s

Enoncé :
Soit f la fonction défini par f(x) = x²-4 / x-2

1) Déterminer f '(x)

2)En déduire les variations de f

3) Determiner l'intersection de Cf avec (0x)

4) Déterminer l'équation de la tangente à Cf au point d'abscisse 1

 

Mes resultats :

1)  j'ai fais le calcul et trouvée x²-4x+4 / (x-2)²

 

2) J'ai calculé delta, ou, il y a 1 racine qui est égale à 2 , et j'ai fais un tableau de signe ou j'ai trouvé + et + . J'ai donc ensuite fait un de variation et mes deux flèches montes ( par contre je n'arrive pas à trouver jusqu'a combien elles montent)

 

3) La, je n'y arrive pas ......

 

4) J'ai tenter, et j'ai alors calculé f '(1) et f(1) pour trouver y=1x+2  .. mais je ne sais pas si c'est ça !

 

Merci de m'aidé a la 3) ! Et de me confirmé mes résultats trouvés .. :) !



Sagot :

Bonjour,

 

Il y a un piège dans ton énnoncé : Il ne faut pas oublier que  (x-2) au dénominateur doit être non nul, il faut que x soit différent de 2. 

 

I = [ -inf ; 2 [ U ]2 ; +inf ]

 

Si tu regardes bien ta fonction est  f(x) = (x+2)(x-2)/(x-2) car x²-4 est une identité remarquable a²-b² = (a+b)(a-b)

 

Si x différent de 2 on a f(x) = x+2  

 

1)  j'ai fais le calcul et trouvée f'(x) = x²-4x+4 / (x-2)²  --> OK mais c'est aussi égal à 

 

(x-2)²/(x-2) = 1 si x différent de 2

 

2) J'ai calculé delta, ou, il y a 1 racine qui est égale à 2 , et j'ai fais un tableau de signe ou j'ai trouvé + et + . J'ai donc ensuite fait un de variation et mes deux flèches montes ( par contre je n'arrive pas à trouver jusqu'a combien elles montent)

 

Attention la valeur 2 est interdite ...

 

On voit que f'(x) = 1 avec xdifférent de 2

donc sur l'intervale  I = [ -inf ; 2 [ U ]2 ; +inf ]   f'(x) est toujours >0, donc f(x) est croissante.

 

 

3) La, je n'y arrive pas ......

 

Pour que Cf coupe Ox, il faut que f(x) = 0

f(x) = (x+2)(x-2)/(x-2) --> f(x) s'annule pour x= -2 ou x=2

mais x = 2 est interdite donc f(x) = 0 pour x = -2

 

 

4) J'ai tenter, et j'ai alors calculé f '(1) et f(1) pour trouver y=1x+2  .. mais je ne sais pas si c'est ça !

 

1x+2 c'est x+2 et c'est l'équation de ta fonction pour x différent de 2, donc ta réponse est bonne car la tangeante à une droite est cette même droite !

 

J'espère que tu as compris

a+

Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Laurentvidal.fr, votre site de confiance pour des réponses. N'oubliez pas de revenir pour plus d'informations.