Laurentvidal.fr est l'endroit idéal pour trouver des réponses rapides et précises à toutes vos questions. Rejoignez notre plateforme de questions-réponses et connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace.

bonjour,

merci de bien vouloir m'aider sur cet exercice de niveau ES

 

on note Po la population initiale de libellules et Pn la population au bout de n années.Des etudes ont permis de modeliser l'evolution de cette population par la relation (R) ci dessous.

Pour tout entier naturel n , on a :

Pn+2-Pn+1=1/2(Pn+1-Pn)                               (R)

on suppose que Po=40 000 en P1=60 000

On definit l'accroisement de la population pendant la premiere année par la difference Pn-Pn+1

 

1/Calculer l'accroisement de la population pendant la premiere année , la deuxieme année et la troisiéme année

en deduire P2 et P3

 

2/On considère les suites (Un) et (Vn) définies pour tout entier naturel n par :

Un=Pn+1-Pn et Vn=Pn+1-1/2Pn

 

a/Prouver que la suite (Un) est geometrique , preciser sa raison et son premier terme

Exprimer Un en fonction de n

 

b/En untilisant la relation (R) , calculer Vn+1-Vn

Que peut on en deduire pour la suite (Vn) ?

 

c/A l'aide de la question precedente démontrer que , pour tout entier naturel on a :

Vn=P1-1/2Po

en deduire Vn

 

d/Demontrer que pour tout entier naturel n , on a :

Pn=2(Vn-Un)

En deduire l'expression de Pn en fonction de n



Sagot :

On definit l'accroisement de la population pendant la premiere année par la difference P1-P0

1/Calculer l'accroisement de la population pendant la premiere année  : 20000

la deuxieme année : P2-P1=(1/2)20000=10000

et la troisiéme année : P3-P2=(1/2)10000=5000

en deduire P2  : P1+1000 soit 70000 et P3 : P2+5000=75000

 

2/a/ Un est géométrique de raison 1/2 par définition et U0=2000 donc Un=20000*(1/2)^n

b/ Vn+1=Pn+2-(1/2)Pn+1

        Vn=Pn+1-(1/2)Pn

donc Vn+1-Vn=(1/2)(Pn+1-Pn)-(1/2)(Pn+1-Pn)=0 Vn est uen suite CONSTANTE

c/ Vn = V0 =P1-P0/2 a pour  valeur 40000

d/ comme Un=20000*(1/2)^n et Vn=40000 on a Pn=80000-40000(1/2)^n

 

Merci d'utiliser notre plateforme. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Visitez toujours Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.