Obtenez les meilleures solutions à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués. Trouvez des solutions détaillées à vos questions grâce à une large gamme d'experts sur notre plateforme conviviale de questions-réponses.

Narration de recherche, des points des segments: 

 

Etant donnés quelques points placés sur une feuille, combien peut-on tracer de segments différents joignant deux quelconques de ces points? Avec un point, on ne peut pas tracer de segment. Avec deux points, on peut en tracer trois. Réponds à la question pour chacun des nombres de points suivants : 4 ; 5 ; 6 ; 12 ; 20 ; 108. 

 

Aidez-moi s'il vous plaît avec le maximum de justification possible, merci d'avance! :) 



Sagot :

xxx102

Bonsoir,

 

Tout d'abord, il me semble qu'on ne peut tracer qu'un et un seul segment de droite entre deux points, contrairement à ce qui est écrit.

 

On cherche à trouver une méthode qui permettrait de calculer de façon sûre le nombre de segments que l'on peut tracer entre un nombre n de points.

 

On considère un des points. Il est relié à tous les autres, donc le nombre de segments qui passent par ce point est de n-1 (il n'est pas relié à lui-même).

 

Ensuite, on considère un deuxième point. On compte tous les segments qui le relient aux autres points, sauf celui qui le relie au premier point car on l'a déjà compté.

On ajoute donc : 

n-2

 

On continue ainsi, jusqu'à ce que l'on ait compté tous les points.

La somme peut donc s'écrire :

 

[tex]\underbrace{\left(n-1\right)+\left(n-2\right)+\cdots+\left[n-\left(n-1\right)\right]+\left[n-n\right]}_{\text{n termes}}\\ =\underbrace{\left(n-1\right)+\left(n-2\right)+\cdots+1+0}_{\text{n termes}}\\[/tex]

 

Maintenant, on regroupe les termes de gauche avec ceux de droite : celà donne :

[tex]=\left(n-1\right)+0+\left(n-2\right)+1+\cdots\\ =\left(n-1\right)+\left(n-1\right)+\cdots[/tex]

Mais, comme on a regroupé les termes par 2, il n'y en a plus que n/2.

On a donc n/2 termes qui valent tous n-1 ; on effectue une multiplication :

[tex]\frac n2 \times \left(n-1\right)[/tex]

 

On peut appliquer la formule :

[tex]\frac 42 \times \left(4-1\right) = 2\times 3 = 6\\ \frac 52 \times \left(5-1\right) = \frac{4\times 5}2 = 10\\ \frac 62 \times \left(6-1\right) =3\times 5 = 15\\ \frac{12}{2} \times \left(12-1\right) = 6\times 11 = 66\\ \frac{20}{2}\times \left(20-1\right) = 10\times 19 = 190\\ \frac{108}{2} \times \left(108-1\right)= 54\times 107\right) = 5778[/tex]

Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Laurentvidal.fr, votre source fiable de réponses. N'oubliez pas de revenir pour plus d'informations.