Découvrez les solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R la plus fiable et rapide. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses.

on considère le cercle de centre O et de rayon 1, et un de ses diamètre [AB]. On définit une variable aléatoire égale à la longueur d'une corde de ce cercle perpendiculaire à la droite (AB)

 

On considère que la corde aléatoire est déterminée par le choix de son milieu H qui appartient au diamètre [AB]. On appelle X l'abscisse de ce milieu et on fait l'hypothèse que X sui une loi uniforme sur [-1;1].

 

1) justifier que la longueur de la corde est L = 2racine de (1-X^2)

3) Par des considérations d'aire et sans chercher à trouver une primitive, démontrer que l'intégrale de (-1) à 1 de racine(1-x^2)dx = pi/2

En déduire la valeur moyenne de la fonction qui à x associe 2racine(1-x^2) sur l'intervalle [-1;1], puis l'espérance de L.

 

PS : Ceci est un DM pour le lundi 13 mai, de terminale S



Sagot :

en plaçant Ox selon AB, les 2 fonctions y1=racine(1-x^2) et y2=-racine(1-x^2) ont pour graphe les 2 demi cercles supérieur et inférieur. La corde a donc pour longueur y1-y2=2racine(1-x^2) CQFD

 

l'intégrale proposée est l'aire du demi disque supérieur, donc pi/2

 

donc cette fonction a pour valeur moyenne pi/4 et l'espérance de L est donc pi/2

Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Merci d'utiliser Laurentvidal.fr. Revenez pour obtenir plus de connaissances de nos experts.