Laurentvidal.fr vous aide à trouver des réponses précises à toutes vos questions grâce à une communauté d'experts chevronnés. Rejoignez notre plateforme de questions-réponses pour obtenir des informations précises d'experts dans divers domaines. Découvrez la facilité d'obtenir des réponses rapides et précises à vos questions grâce à l'aide de professionnels sur notre plateforme.

Lorsque de la pénicilline est injectée directement dans le sang, on considère que sa vitesse d'élimination est, a chaque instant proportionnelle a la quantité de pénicilline présente dans le sang a cet instant. Ainsi, la quantité de pénicilline Q(t) (exprimée en mg) présente dans le sang a l'instant t (exprimé en min) vérifie, pour tout réel t positif ou nul, Q'(t)=aQ(t), où a est une constante réelle. A l'instant t=0, on injecte une dose de 5mg de pénicilline.

1) déterminer une expression de Q(t) en fonction de a.
2) Sachant qu'au bout de deux heures, la quantité de pénicilline présente dans le sang a diminué de moitié, déterminer la valeur de a.
3) déterminer a partir de sel instant, exprimé en heures et minutes et arrondi a la minute, la quantité de pénicilline présente dans le d'ange sera inférieure a 1mg.

Dans cette partie, on injecte la pénicilline en perfusion au rythme A mg par minute. La quantité Q(t) exprimée en mg de pénicilline présente dans le sang a l'instant t (exprimé en min) vérifie alors, pour tout réel t>0, Q'(t)=A-kQ(t), où k est une constante réelle strictement positive.

1a) déterminer en fonction de A et k, la forme générale des solutions de l'équation différentielle (E) : y'+ky=A
B) déterminer, en fonction de A et k, une expression de la solution particulière Q de l'équation (E) qui vérifie Q(0)=0
2a) déterminer la limite en +00 de Q en fonction de A et k.
B) sachant qu'on atteint la moitié de la quantité limite en 3h, déterminer la valeur de k
C) on souhait que la quantité de pénicilline tende vers 80mg. Calculer A.

Sagot :

Q(t)=Cexp(a*t) et comme Q(0)=C, on a Q(t)=0,005*exp(a*t)

 

Q(2)=Q(0)/2 donc exp(2a)=1/2 soit 2a= -ln(2) d'où a=-ln(2)/2

 

Q(t)=Q(0)/5 donne exp(at)=1/5 soit a*t=-ln(5) et donc t=2ln(5)/ln(2)

 

y'+ky a pour solution particulière y=A/k donc pou solution générale A/k+Cexp(-kt)

si Q(0)=0 c'est que A/k+C=0 donc Q(t)=(A/k)(1-exp(-kt))

quand t ->+inf, Q(t) tend donc vers A/k

Q(3)=limite/3 donc 1-exp(-3t)=1/3 donne exp(-3k)=2/3 et -3k=ln(2/3) soit k=(ln(3)-ln(2))/3

 

A/k=80 donc A=80(ln(3)-ln(2))/3

 

Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Merci d'utiliser Laurentvidal.fr. Revenez pour obtenir plus de connaissances de nos experts.