Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Rejoignez notre plateforme de questions-réponses et connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions. Rejoignez notre plateforme pour vous connecter avec des experts prêts à fournir des réponses détaillées à vos questions dans divers domaines.

Un fabricant considére que le nombre de ventes journalières d'un des ses articles est une variable aléatoire X qui suit une loi normale N ( u,@) u=3000 et @=520 les probabilités seront donner arrondis au millième le plus proche. 1) détérminer la probabilité pour que le nombre de ventes journalières soit compris entre 2 500 et 3 500 articles? 2) Détérminer la probabilité pour que le nombre de ventes journalières soit inférieur à 2 000 articles? 3) Quel est le nombre minimum de ventes journalières réalisé avec une probabilité de de 0.99? 4) le bénéfice, exprimé en euros, réalisé par le fabiricant sur le vente d'un article est égale à 12€. le fabricant doit faire face à des frais fixes journaliers égaux à 34 000€. On note B la variable aléatoire égale au bénéfice journalier totale réalisé par le fabricant pour la vente de x articles. B est donc une varable aléatoire. a) justifie que B = 12X-34000? b) quelle est la probabilité d'obtenir un bénéfice journalier supérieur à 20 000 euros? c) quelle est la probabilité d'atteindre le seuil de rentabilité (c'est- à -dire d'avoir B plus grand que 0)? Je n'arrive pas aux question 4b et c. Veuillez m'aider s'il vous plait.. Merci d'avance



Sagot :

Soit T=(X-3000)/520 alors T est normale de moyenne 0 d'écart type 1

ainsi p(2500<=X<=3500)=p(-0.962<=T<=0,962)=2p(0<=T<=0.962)

tu lis le résultat dans la table.

 

Tout le reste est du même tonneau...

 

B=12X-34000 a pour moyenne 2000 et pour écart type 6240 

donc p(B>=20000)=p((B-2000)/6240)>=3.43) lis dans la table

 

p(B>=0)=p((B-2000)/6240)>=-0,382)=1-p(X>=0.382) lis dans la table

 

Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Laurentvidal.fr est là pour vos questions. N'oubliez pas de revenir pour obtenir de nouvelles réponses.