Bonjours, j'ai un dm à faire sur les probabilités mais je bloque à partir de la partie C pouvez-vous m'aider ?
Sujet de l'exercice :
-Suivant qu'un conducteur a ou non des accidents pendants une année, sa compagnie d'assurance augmente ou diminue le montant de son assurance annuelle.
-Si un assuré n'a pas d'accident pendant une année, il obtient l'année suivant un "bonus" de 5%, c'est - a dire que le montant de son assurance baisse de 5%.
-S‘il n'a pas d'accident deux ans de suite, le montant de son assurance baisse une nouvelle fois de 5%, et ainsi de suite jusqu'à une reduction maximum de 50%.
En revanche, si l'assuré a un accident, le montant de son assurance augmente de 25% et ne peut baisser que s'il reste 2 ans sans avoir d'accident. Son malus retombe alors à 0%.
On admet qu'un assuré a, au maximum, un seul accident par an.
On suppose que la probabilité qu'un assuré ait un accident au cours d'une année est égale à 0.26 quelle que soit l'année et s'il a eu ou non un accident l'année précédente. On admet aussi que le montant de son assurance n'est modifié que par les bonus et malus obtenus
PARTIE A
Soit X la variable aléatoire égale au nombre d'accidents au bout des trois années.
1)a) Quelles sont les valeurs prises par X ?
Determiner la loi de probabilité suivie par X.
b) Construire l'arbre pondéré correspondant à l'expérience.
2) Calculer les probabilités :
a) de ne pas avoir d'accident pendant ces 3 années.
b) d'avoir exactement un accident pendant ces 3 années.
c) d'avoir au moins un accident pendant ces 3 années.
donner les valeurs arrondies à 10 puissance -4 près
PARTIE C
Soit y la variable aléatoire égale au pourcentage d'évolution de la prime d'assurance au bout des trois années. A l'aide de l'arbre précédent, déterminer la loi de probabilité de Y. Arrondir les valeurs à 1% près.
Calculer son espérance. En donner une interprétation du point de vu de l'assureur.
Mes réponses :
PARTIE A
1)a) valeurs de X : 0, 1, 2,3 accidents
X suit une loi binomiale de paramètre B (3 ; 0.26)
(j'ai fait le calcul avec (n;p) )
b) arbre pondéré sur 3 niveau avec un coté une branche avec accident à 0.26 de probabilité et l'autre 0 accident à 0.74 de probabilités et ainsi de suite
2) a) p(X=0)=0.74*0.74*0.74=0.4052
b) P(X=1)= ??
c) P(X > ou = 1)= 1-P(X=0)= 1- 0.405224= 0.5948
PARTIE C
Je ne vois pas, ce qu'il faut faire, utiliser la probabilité 0.26 ?
Pouvez-vous m'aider ?? Et me dire si mes résultats a la partie A , son juste . Svp Merci !
Sujet de l'exercice :
-Suivant qu'un conducteur a ou non des accidents pendants une année, sa compagnie d'assurance augmente ou diminue le montant de son assurance annuelle.
-Si un assuré n'a pas d'accident pendant une année, il obtient l'année suivant un "bonus" de 5%, c'est - a dire que le montant de son assurance baisse de 5%.
-S‘il n'a pas d'accident deux ans de suite, le montant de son assurance baisse une nouvelle fois de 5%, et ainsi de suite jusqu'à une reduction maximum de 50%.
En revanche, si l'assuré a un accident, le montant de son assurance augmente de 25% et ne peut baisser que s'il reste 2 ans sans avoir d'accident. Son malus retombe alors à 0%.
On admet qu'un assuré a, au maximum, un seul accident par an.
On suppose que la probabilité qu'un assuré ait un accident au cours d'une année est égale à 0.26 quelle que soit l'année et s'il a eu ou non un accident l'année précédente. On admet aussi que le montant de son assurance n'est modifié que par les bonus et malus obtenus
PARTIE A
Soit X la variable aléatoire égale au nombre d'accidents au bout des trois années.
1)a) Quelles sont les valeurs prises par X ?
Determiner la loi de probabilité suivie par X.
b) Construire l'arbre pondéré correspondant à l'expérience.
2) Calculer les probabilités :
a) de ne pas avoir d'accident pendant ces 3 années.
b) d'avoir exactement un accident pendant ces 3 années.
c) d'avoir au moins un accident pendant ces 3 années.
donner les valeurs arrondies à 10 puissance -4 près
PARTIE C
Soit y la variable aléatoire égale au pourcentage d'évolution de la prime d'assurance au bout des trois années. A l'aide de l'arbre précédent, déterminer la loi de probabilité de Y. Arrondir les valeurs à 1% près.
Calculer son espérance. En donner une interprétation du point de vu de l'assureur.
Mes réponses :
PARTIE A
1)a) valeurs de X : 0, 1, 2,3 accidents
X suit une loi binomiale de paramètre B (3 ; 0.26)
(j'ai fait le calcul avec (n;p) )
b) arbre pondéré sur 3 niveau avec un coté une branche avec accident à 0.26 de probabilité et l'autre 0 accident à 0.74 de probabilités et ainsi de suite
2) a) p(X=0)=0.74*0.74*0.74=0.4052
b) P(X=1)= ??
c) P(X > ou = 1)= 1-P(X=0)= 1- 0.405224= 0.5948
PARTIE C
Je ne vois pas, ce qu'il faut faire, utiliser la probabilité 0.26 ?
Pouvez-vous m'aider ?? Et me dire si mes résultats a la partie A , son juste . Svp Merci !