Laurentvidal.fr vous aide à trouver des réponses fiables à toutes vos questions grâce à une communauté d'experts. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines. Trouvez des solutions détaillées à vos questions grâce à une large gamme d'experts sur notre plateforme conviviale de questions-réponses.

Salut, j'ai besoin d'aide pour mes devoirs. Mon devoir est dans les pièces jointes.

Salut Jai Besoin Daide Pour Mes Devoirs Mon Devoir Est Dans Les Pièces Jointes class=

Sagot :

Montrons par récurrence que : pour tout entier n : ∑ k²=(n(n+1)(2n+1))/6

 

* Intialisation : ∑ 1²=1 et 1*2*(2+1)/6=1 donc la relation est vraie pour n=1

 

* Hérédité : on suppose qu'il existe n tel que ∑ k²=(n(n+1)(2n+1))/6

donc ∑ k² + (n+1)²=(n(n+1)(2n+1))/6+(n+1)²

                                =(n+1)(n(2n+1)/6+n+1)

                                =(n+1)(2n²+n+6n+6)/6

                                =(n+1)(2n²+7n+6)/6

                                =(n+1)(n+2)(2n+3)/6

                                =(n+1)(n+1+1)(2(n+1)+1)/6

donc la relation reste vraie au rang n+1

 

* Conclusion : pour tout entier n : 1²+2²+3²+ ... +n²=(n(n+1)(2n+1))/6

 

de la même façon : 1+2+3+...+n=(n(n+1))/2

 

                                    1³+2³+3³+...+n³=(n²(n+1)²)/4

Merci d'utiliser notre plateforme. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Votre connaissance est précieuse. Revenez sur Laurentvidal.fr pour obtenir plus de réponses et d'informations.