Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Explorez notre plateforme de questions-réponses pour trouver des solutions fiables grâce à une large gamme d'experts dans divers domaines. Expérimentez la commodité de trouver des réponses précises à vos questions grâce à une communauté dévouée d'experts.
Sagot :
Pour simplifier, je vais mettre p au lieu de phi.
1) 1/p=p-1
Multiplie de chaque côté par p, tu obtiens
1=p²-p , tu passe le p de l'aute coté
p+1=p²
2) p^3=p²*p=(p+1)*p=p²+p. Or p²=p+1 D'où
p^3=p+1+p=2p+1
p^4=p^3*p=(2p+1)*p=2p²+p. Or p²=p+1 D'où
p^4=2(p+1)+p=2p+2+p=3p+2
3)p^5=p^4*p=(3p+2)*p=3p²+2p. Or p²=p+1 D'où
p^5=3(p+1)+2p=3p+3+2p=5p+3
4) Si x²=x+1 , alors x²-x-1=0
Donc dans ta calculatrice tape :
(1.618)²-(1.618)-1
Tu obtiens -0.000076
Ce qui est proche de 0, donc 1.618 st bien une valeur approchée d'une solution de l'équation x²=x+1
5) 1.618^5 ≈ 11.090
5*1.618+3 = 11.09
Les résultats sont à peu près égaux, on a donc trouvé la bonne expression de p^5
A titre informatif, ce nombre φ est appelé "nombre d'or" puisqu'il permet la création de proportions parfaites. Sa valeur exacte est :
[tex]\frac{1+\sqrt(5)}{2}[/tex]
Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Visitez toujours Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.