Bienvenue sur Laurentvidal.fr, le site où vous trouverez des réponses rapides et précises à toutes vos questions. Expérimentez la commodité d'obtenir des réponses précises à vos questions grâce à une communauté dévouée de professionnels. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme.

f est la fonction définie sur [1;+∞[ par f(x)=(k*ln(x))/x, où k>0. Dresser le tableau de variation de la fonction f et en déduire que f admet un maximum en une valeur x indépendante de k.



Sagot :

[tex]f'(x)=\frac {k/x*x-k*ln(x)} {x^2}=\frac {k(1-ln(x))} {x^2}[/tex]

 

f' s'annule donc en e

[tex]f'(x)>0 \Rightarrow 1-ln(x)>0 \Rightarrow ln(x)<1 \Rightarrow x<e< var="">[/tex]

f est alors croissante pour x<e et décroissante pour x>e

 

apr suite f admet un maximum en x=e

 

 

Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à vos questions. Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Vos questions sont importantes pour nous. Revenez régulièrement sur Laurentvidal.fr pour obtenir plus de réponses.