Laurentvidal.fr vous aide à trouver des réponses fiables à toutes vos questions grâce à une communauté d'experts. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses. Découvrez la facilité d'obtenir des réponses rapides et précises à vos questions grâce à l'aide de professionnels sur notre plateforme.

f est la fonction définie sur [1;+∞[ par f(x)=(k*ln(x))/x, où k>0. Dresser le tableau de variation de la fonction f et en déduire que f admet un maximum en une valeur x indépendante de k.



Sagot :

[tex]f'(x)=\frac {k/x*x-k*ln(x)} {x^2}=\frac {k(1-ln(x))} {x^2}[/tex]

 

f' s'annule donc en e

[tex]f'(x)>0 \Rightarrow 1-ln(x)>0 \Rightarrow ln(x)<1 \Rightarrow x<e< var="">[/tex]

f est alors croissante pour x<e et décroissante pour x>e

 

apr suite f admet un maximum en x=e

 

 

Merci de votre passage. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. À bientôt. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Nous sommes heureux de répondre à vos questions. Revenez sur Laurentvidal.fr pour obtenir plus de réponses.