Obtenez des solutions à vos questions sur Laurentvidal.fr, la plateforme de questions-réponses la plus réactive et fiable. Rejoignez notre plateforme de questions-réponses pour obtenir des réponses précises à toutes vos interrogations de la part de professionnels de différents domaines. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme.

f est la fonction définie sur [1;+∞[ par f(x)=(k*ln(x))/x, où k>0. Dresser le tableau de variation de la fonction f et en déduire que f admet un maximum en une valeur x indépendante de k.



Sagot :

[tex]f'(x)=\frac {k/x*x-k*ln(x)} {x^2}=\frac {k(1-ln(x))} {x^2}[/tex]

 

f' s'annule donc en e

[tex]f'(x)>0 \Rightarrow 1-ln(x)>0 \Rightarrow ln(x)<1 \Rightarrow x<e< var="">[/tex]

f est alors croissante pour x<e et décroissante pour x>e

 

apr suite f admet un maximum en x=e