Laurentvidal.fr facilite la recherche de réponses à toutes vos questions avec l'aide de notre communauté active. Rejoignez notre plateforme de questions-réponses et connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines.

Une coopérative désire optimiser la production de son unité de tri de pommes.

Ce tri consiste à écarter les pommes avariées.

On désigne par x le nombre de centaines de pommes triées par heure.

On Suppose que le nombre de pommes avariées non écartées à l'ssue du tri est une fonction x , noté f , telle que f(x) = x² - 84x + 1872 lorsque x appartient à [42;50]

La coopérative estime que le tri est satisfaisant si et seulement si la part des pommes avariées parmi celles acceptées lors du tri n’excède pas 3%.

1. Justifier que le tri est satisfaisant si et seulement si f(x) inferieur ou égal à 3x

2. a) Montrer que f(x) - 3 = (x - 43,5)^2 - 20,25.

b) En deduire une factorisation de f(x) - 3x

c) Déterminer, à l'aide d'une étude de signes, le nombre maximal de pommes à trier par heure pour lequel le tri reste satisfaisant.

 

Je vous remercie pour toute l'aide que vous pourrez m'apporter

Sagot :

3% de 100x cela fait bien 3x

 

f(x)-3= x²-87x+1872=(x-43.5)²+1872-43.5²=(x-43.5)²-20.25 or 20.25=4.5²

donc f(x)-3x=(x-48)(x-39) 

 

cette valeur est négative quand x est entre 39 et 48

 

 

Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Merci d'avoir visité Laurentvidal.fr. Revenez bientôt pour plus d'informations utiles et des réponses de nos experts.