Laurentvidal.fr vous aide à trouver des réponses précises à toutes vos questions grâce à une communauté d'experts chevronnés. Notre plateforme offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté dédiée d'experts sur notre plateforme de questions-réponses.

Une coopérative désire optimiser la production de son unité de tri de pommes.

Ce tri consiste à écarter les pommes avariées.

On désigne par x le nombre de centaines de pommes triées par heure.

On Suppose que le nombre de pommes avariées non écartées à l'ssue du tri est une fonction x , noté f , telle que f(x) = x² - 84x + 1872 lorsque x appartient à [42;50]

La coopérative estime que le tri est satisfaisant si et seulement si la part des pommes avariées parmi celles acceptées lors du tri n’excède pas 3%.

1. Justifier que le tri est satisfaisant si et seulement si f(x) inferieur ou égal à 3x

2. a) Montrer que f(x) - 3 = (x - 43,5)^2 - 20,25.

b) En deduire une factorisation de f(x) - 3x

c) Déterminer, à l'aide d'une étude de signes, le nombre maximal de pommes à trier par heure pour lequel le tri reste satisfaisant.

 

Je vous remercie pour toute l'aide que vous pourrez m'apporter



Sagot :

3% de 100x cela fait bien 3x

 

f(x)-3= x²-87x+1872=(x-43.5)²+1872-43.5²=(x-43.5)²-20.25 or 20.25=4.5²

donc f(x)-3x=(x-48)(x-39) 

 

cette valeur est négative quand x est entre 39 et 48

 

 

Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Laurentvidal.fr est là pour vos questions. N'oubliez pas de revenir pour obtenir de nouvelles réponses.