Laurentvidal.fr vous aide à trouver des réponses à toutes vos questions grâce à une communauté d'experts passionnés. Trouvez des réponses rapides et fiables à vos questions grâce à l'aide d'experts expérimentés sur notre plateforme conviviale. Connectez-vous avec une communauté d'experts prêts à fournir des solutions précises à vos questions de manière rapide et efficace sur notre plateforme conviviale de questions-réponses.

Pouvez vous m'aidez s'il vous plaît :(..

Une entreprise fabrique et vend une quantité x d'objets. La capacité normale de production de l'entreprise est de 21 objets. Le coût total de fabrication de x objets est ,exprimé en euros, donné par C: (x)=2x^3-54x^2+470x+80.

Chaque objet est vendu 200 euros.

 

1) Pour 12objets fabriqués et vendus,calculer le coût de fabrication puis la recette et enfin le bénéfice.

 

2) R(x) et B(x) désignent respectivement la recette et le bénéfice pour x objets vendus b)Montrer que le bénéfice pour x objets vendus est : B(x)=-2x^3+54x^2-270x-80 B(x)=-C(x) à un facteur près

 

3) On considère la fonction B de la variable réelle x définie sur l'intervalle [0;21] par B(x)=-2x^3+54x^2-270x-80

 

a) Soit B' la fonction dérivéé de la fonction B. Calculer B'(x). B) Etudier le signe de B' sur l'intervalle [0;21]. En déduire le tableau de variations de B sur [0;21].

 

4) Pour quel nombre d'objet fabriqués et vendus le bénéfice est il le maximum ? Quel est ce bénéfice maximum?



Sagot :

C(12)=2*12*144-54*144+470*12+80=--30*144+4700+940+80=1400

R(12)=200*12=2400

B(12) vaut donc 1000

 

B(x)=200*x-C(x)=-2x^3+54x^2-270x-80

 

B' vaut donc -6x^2+108x-270=-6(x^2-18x+45) or x^2-18x+45=(x-9)^2-36 donc B' s'annule en x=15 et en x=3

 

x       0                    3                   15                    21

B'              -             0          +        0        -

B      -80  decroit  -622     croit  1430   decroit  -298

 

maxi de B en x=15 valeur 1430

 

Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Merci d'avoir visité Laurentvidal.fr. Revenez bientôt pour plus d'informations utiles et des réponses de nos experts.