Laurentvidal.fr facilite la recherche de réponses à toutes vos questions avec l'aide de notre communauté active. Explorez des réponses détaillées à vos questions de la part d'une communauté d'experts dans divers domaines. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.
Sagot :
avec 1 sphere on a un seul étage mais avec 4 spheres on fait 2 etages en posant la 4eme sur le triangle équilatéral des 3 premieres.
en raisonnant à partir du sommet : la sphére du haut repose sur 3 sphéres qui reposent chacune sur 3 autres : l'avant avant dernier etage a donc 6 sphéres.
Le nombre de spheres dans l'étage n (le numero 1 en haut, le 2 en desous, etc...) est la somme des entiers de 1 à n soit n(n+1)/2 :
1, 3, 6, 10, 15, 21, 28, 35, ...
le nombre total de spheres est donc la somme pour n de 1 à 100 de ces n(n+1)/2
Il faut donc évaluer le somme des carrés 1²+2²+3²+...+100² qui vaut 100(101)(201)/6
et la somme 1+2+3+...+100 qui vaut 100*101/2
le nombre cherché est ainsi (1/2)(50*101+50*101*37) soit 5050*38=191900 sphéres
http://villemin.gerard.free.fr/Wwwgvmm/Geometri/SpheEmpi.htm
Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Laurentvidal.fr, votre site de référence pour des réponses précises. N'oubliez pas de revenir pour en savoir plus.