Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la meilleure plateforme de Q&R. Notre plateforme offre une expérience continue pour trouver des réponses précises grâce à un réseau de professionnels expérimentés. Explorez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme de questions-réponses complète.
Sagot :
Bon alors avec les calcul et explication
E remplacer le haut du sapin par la lettre g le haut du poteau par la lettre d le bonhomme de neige par la lettre c le bas tu poteau par la lettre B et la bas tu sapin par la lettre A
G utiliser le théorème de thales ki les égalité suivante dans c comdition
EC sur CD = CA sur CB = EA sur DB
g ensuite fait CA x DB : CB
Se qui donne le résultat de AE donc 6
AE représentant la hauteur du sapin la réponse est donc 6m
Pour le 2ème truc g également en lettre les point c à dire le bas de la tour par A le haut par B le bout de l'ombre par C le haut tu bâton par d le bout de l'ombre du bâton par E g placer c deu triangle l'un dan lotre de manière à se ke D soi un point de BA , E un point de AC et le bas du bâton et de latour corensponde o point A
Toujours avec thales on abtien les égalité suivante:
AD sur AB = AE sur AC = DE sur BC
G donc calculer AC x AD : AE = AB = 19,5
AE correspondant à la hauteur de la tour la tour mesure donc 19,5 m
E remplacer le haut du sapin par la lettre g le haut du poteau par la lettre d le bonhomme de neige par la lettre c le bas tu poteau par la lettre B et la bas tu sapin par la lettre A
G utiliser le théorème de thales ki les égalité suivante dans c comdition
EC sur CD = CA sur CB = EA sur DB
g ensuite fait CA x DB : CB
Se qui donne le résultat de AE donc 6
AE représentant la hauteur du sapin la réponse est donc 6m
Pour le 2ème truc g également en lettre les point c à dire le bas de la tour par A le haut par B le bout de l'ombre par C le haut tu bâton par d le bout de l'ombre du bâton par E g placer c deu triangle l'un dan lotre de manière à se ke D soi un point de BA , E un point de AC et le bas du bâton et de latour corensponde o point A
Toujours avec thales on abtien les égalité suivante:
AD sur AB = AE sur AC = DE sur BC
G donc calculer AC x AD : AE = AB = 19,5
AE correspondant à la hauteur de la tour la tour mesure donc 19,5 m
Haut du sapin A, bas du sapin B, haut du poteau D et bas E et le dernier C:
Dans le triangle ABC,on a :
E appartient au segment BC
D appartient au segment AC
et les droites AB et DE sont paralleles
donc d ap^res le theoreme de thales on a :
CE sur CB=CD sur CA= ED sur BA
en particulier: ED sur BA= CE sur CB
et la tu calcule
voila, j espere que Ca t aidera:)
Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Vos questions sont importantes pour nous. Revenez régulièrement sur Laurentvidal.fr pour obtenir plus de réponses.