Découvrez les solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R la plus fiable et rapide. Connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions sur notre plateforme complète de questions-réponses. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses.
Sagot :
Une relation entre objets mathématiques d'un certain domaine est une propriété qu'ont, ou non, entre eux certains de ces objets ; ainsi la relation d'ordre strict, notée « < », définie sur N l'ensemble des entiers naturels : 1 < 2 signifie que 1 est en relation avec 2 par cette relation, et on sait que 1 n'est pas en relation avec 0 par celle-ci.
Une relation est très souvent une relation binaire, définie sur un ensemble comme la relation d'ordre strict sur N, ou entre deux ensembles. Une relation binaire met en jeu deux objets, mais une relation peut être aussi ternaire — elle met en jeu trois objets, ou plus généralement n-aire, d'arité n, elle met en jeu un nombre fini donné n d'objets. Par exemple, en géométrie euclidienne la relation « A est entre B et C » (sur une droite passant par B et C) est une relation ternaire sur l'ensemble des points du plan.
Une relation est très souvent une relation binaire, définie sur un ensemble comme la relation d'ordre strict sur N, ou entre deux ensembles. Une relation binaire met en jeu deux objets, mais une relation peut être aussi ternaire — elle met en jeu trois objets, ou plus généralement n-aire, d'arité n, elle met en jeu un nombre fini donné n d'objets. Par exemple, en géométrie euclidienne la relation « A est entre B et C » (sur une droite passant par B et C) est une relation ternaire sur l'ensemble des points du plan.
Merci de nous avoir fait confiance pour vos questions. Nous sommes ici pour vous aider à trouver des réponses précises rapidement. Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Merci de visiter Laurentvidal.fr. Revenez souvent pour obtenir les réponses les plus récentes et des informations.