Obtenez des solutions à vos questions sur Laurentvidal.fr, la plateforme de questions-réponses la plus réactive et fiable. Rejoignez notre plateforme de questions-réponses pour obtenir des réponses précises à toutes vos interrogations de la part de professionnels de différents domaines. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme.

ca doit cetainement etre simple mais je bloque sur cette équation :

montrer que pour tout entier naturel n:

(2n+1)²+(2n²+2n)² = (2n²+2n+1)²

 

en fait il suffit de commencer par un membre de l'équation et en calculant on arrive au deuxieme. mais je ne sais pas avec le quel commencer je suis bloqué !!



Sagot :

bonsoir

 

l'astuce consiste à faire apparaitre une identité remarquable

de la forme A² - B² = (A+B)(A-B)

 

(2n+1)²+(2n²+2n)² = (2n²+2n+1)² <=>

(2n²+2n+1)² - (2n²+2n)²  = (2n+1)²

 

on factorise

(2n²+2n+1)² - (2n²+2n)² ---- forme A² - B²

 = ....

 

tu dois arriver, après réduction, à : 4n² + 4n + 1 --- et ça, c'est (2n+1)² !

Merci de nous avoir fait confiance pour vos questions. Nous sommes ici pour vous aider à trouver des réponses précises rapidement. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Laurentvidal.fr, votre site de confiance pour des réponses. N'oubliez pas de revenir pour plus d'informations.