Laurentvidal.fr est là pour vous fournir des réponses précises à toutes vos questions avec l'aide de notre communauté experte. Connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions sur notre plateforme complète de questions-réponses. Expérimentez la commodité d'obtenir des réponses précises à vos questions grâce à une communauté dévouée de professionnels.
Sagot :
Thales te sert à trouver des longueurs quant 2 droites se coupenten A :
quant tu as 2 droites qui se coupent et que 2 autres droites parralleles entre elles coupent les 2 1eres en B' et C' tu peux etablir une egalité :
AB/AB' = AC/AC' mais aussi BC/B'C'
tu t' en sers des qu' on te demande des longueurs et que tu vois que tu as un triangle et un droite parrallele à l' hypothènuse
en revanche si tu as un triangle et qu' on te demande de prouver qu' une autre droite y est parallele, utilise la réciproque ;-)
courage, en fait c' est tout bête !
La propriété de Thalès
1) Triangles déterminés par deux parallèles coupant deux sécantes:
Propriété: Dans un triangle ABC,
si M est un point du côté [AB],
N un point du côté [AC]
et si les droites (MN) et (BC) sont parallèles,
alors, les longueurs des côtés du triangle AMN
sont proportionnelles aux longueurs des côtés correspondants du triangle ABC.
Le tableau suivant est un tableau de proportionnalité :
2) Egalité des trois rapports: la propriété de Thalès:
Propriété des "Trois Rapports Egaux":
Dans un triangle ABC,
si M est un point du côté [AB],
N un point du côté [AC]
et si les droites (MN) et (BC) sont parallèles, alors :
3) Partage de segment:
AB=5cm, partager [AB] en trois parties égales.
4) Exemples :
Enoncé 1: Les droites (MN) et (BC) sont parallèles.
AB=8; AM=2; AN=3. Calculer NC.
Solution: Dans le triangle ABC, M est sur [AB], N est sur [AC] et (MN)//(BC).
Donc les longueurs des côtés de AMN sont proportionnelles aux longueurs des côtés correspondants de ABC.
Or AB = 8 = 4´2= 4´AM donc AC = 4´AN = 4´3 = 12.
Donc NC = AC-AN = 12-3 = 9.
NC=9
Enoncé 2: Dans le triangle MER on a S point de [ME];
I point de [MR] ; les droites (SI) et (ER) parallèles;
MR=26; MS=3 et SE=7. Calculer MI.
Solution: Dans le triangle MER, S est sur [ME], I est sur [MR] et (IS)//(ER). Donc d'après la propriété des "trois rapports égaux":
Enoncé 3: Dans le triangle RPQ on a S sur [PR] et T sur [PQ].
On a aussi PS=9; SR=4 et ST=13.
Les droites (RQ) et (ST) sont parallèles. Calculer RQ.
Solution: Dans le triangle RPQ, S est sur [PR], T est sur [PQ], et (ST)//(RQ).
Donc, d'après la propriété des "trois rapports égaux":
Remarque : le texte de l'énoncé ne demande pas de donner une valeur approchée de RQ, il faut donc donner une valeur exacte, ici une fraction.
Nous apprécions votre visite. Nous espérons que les réponses trouvées vous ont été bénéfiques. N'hésitez pas à revenir pour plus d'informations. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Laurentvidal.fr est là pour vos questions. N'oubliez pas de revenir pour obtenir de nouvelles réponses.