Bienvenue sur Laurentvidal.fr, la meilleure plateforme de questions-réponses pour trouver des réponses précises et rapides à toutes vos questions. Trouvez des réponses rapides et fiables à vos questions grâce à l'aide d'experts expérimentés sur notre plateforme conviviale. Explorez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme de questions-réponses complète.

Bonjour, j'ai un problème à résoudre que je n'arrive pas sur les fonctions du deuxième degré:

 

Soit la famille de parabole d'équation      y=mx² + 2x + m-2

 

Détermine m pour que la parabole 

 

a) admettre la droite d'équation 2x + 3 =0 comme axe de symétrie.

 

b)ne coupe pas l'axe des abscisses.

 

J'ai les réponses mais je ne trouve pas le développement

                            a) m = 2/3

                            b) m est différent de 1

 

Merci beaucoup! :)

 

 



Sagot :

bonsoir

 

a) une parabole admet toujours un axe de symétrie VERTICAL,

l'équation d'une telle droite doit être de la forme x = un nombre.

ici 2x + 3 =0  <=> x = -3/2 ... donc c'est possible.

 

par ailleurs, ce nombre est égal à l'abscisse du sommet (extremum) de la parabole.

en cours, tu as vu que cette abscisse s'appelle alpha et est égale à  -b/2a

 

y= mx² + 2x + m-2

il s'agit d'une fonction trinome, forme ax²+bx+c, avec

a = m

b = 2

c = m-2

ainsi, alpha = -b/2a = -2/2m = -1/m

 

pour remplir la condition posée, il faut donc que

-1/m = -3/2 .... équation à résoudre pour trouver m

je te laisse finir.

 

b)ne coupe pas l'axe des abscisses.

raisonnons "à l'envers" : si la parabole coupe l'axe des abscisses, cela signifie que f(x) = 0 <=>

mx² + 2x + m-2 = 0

 

on calcule delta : il faut que delta soit nul ou positif pour qu'il y ait respectivement soit 1 ou soit 2 solutions : traduction, soit 1 , soit 2 points d'intersection entre la parabole et l'axe des abscisses.

 

delta = b²-4ac ... je te laisse faire, tu dois arriver à

= -4(m-1)²

 

étude du signe de delta : (m-1)² étant toujours positif, delta est toujours négatif OU NUL.

---> si delta est négatif, aucune solution : la parabole ne coupera jamais l'axe des abscisses

---> si delta est nul, il y aura 1 point de la parabole qui touchera l'axe

il te reste donc à résoudre l'équation

delta = 0 <=>

-4(m-1)² = 0 ... je te laisse conclure?

Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci d'utiliser Laurentvidal.fr. Continuez à nous rendre visite pour trouver des réponses à vos questions.