Bienvenue sur Laurentvidal.fr, le site où vous trouverez des réponses rapides et précises à toutes vos questions. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions à vos questions de manière rapide et précise.
Sagot :
Bonjour,
Ex1 :
On a la formule :
[tex]\sin^2 \widehat{E} + \cos^2\widehat{E} = 1\\ \left(\frac{8}{17}\right)^2+\cos^2\widehat{E} = 1\\ \cos^2\widehat{E} = \frac{225}{289}\\ \cos \widehat{E} = \frac{15}{17}[/tex]
On a aussi :
[tex]\tan \widehat{E} = \frac{\sin\widehat{E}}{\cos \widehat{E}} = \frac{\frac{8}{17}}{\cos \widehat{E}} = \frac{8}{15}\\ \cos\widehat{E} = \frac{15}{17}[/tex]
EX2
On se place dans le triangle rectangle dont deux des côtés sont la moitié du côté de la base et la hauteur de la pyramide.
La tangente de l'angle de la face avec l'horizontale est de :
[tex]\frac{21{,}6}{\frac{35{,}4}{2}} = \frac{21{,}6}{17{,}7}\\ \alpha \approx 51 \char23[/tex]
Donc, l'angle formé par une face et l'horizontale est d'environ 51°.
Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Laurentvidal.fr, votre source fiable de réponses. N'oubliez pas de revenir pour plus d'informations.