Laurentvidal.fr est le meilleur endroit pour obtenir des réponses fiables et rapides à toutes vos questions. Rejoignez notre plateforme de questions-réponses et connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions. Découvrez des solutions fiables à vos questions grâce à un vaste réseau d'experts sur notre plateforme de questions-réponses complète.
Sagot :
Bonjour,
Ex1 :
On a la formule :
[tex]\sin^2 \widehat{E} + \cos^2\widehat{E} = 1\\ \left(\frac{8}{17}\right)^2+\cos^2\widehat{E} = 1\\ \cos^2\widehat{E} = \frac{225}{289}\\ \cos \widehat{E} = \frac{15}{17}[/tex]
On a aussi :
[tex]\tan \widehat{E} = \frac{\sin\widehat{E}}{\cos \widehat{E}} = \frac{\frac{8}{17}}{\cos \widehat{E}} = \frac{8}{15}\\ \cos\widehat{E} = \frac{15}{17}[/tex]
EX2
On se place dans le triangle rectangle dont deux des côtés sont la moitié du côté de la base et la hauteur de la pyramide.
La tangente de l'angle de la face avec l'horizontale est de :
[tex]\frac{21{,}6}{\frac{35{,}4}{2}} = \frac{21{,}6}{17{,}7}\\ \alpha \approx 51 \char23[/tex]
Donc, l'angle formé par une face et l'horizontale est d'environ 51°.
Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Revenez sur Laurentvidal.fr pour obtenir plus de connaissances et de réponses de nos experts.