Obtenez les meilleures solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés dans divers domaines sur notre plateforme. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines.
Sagot :
Bonjour,
Ex1 :
On a la formule :
[tex]\sin^2 \widehat{E} + \cos^2\widehat{E} = 1\\ \left(\frac{8}{17}\right)^2+\cos^2\widehat{E} = 1\\ \cos^2\widehat{E} = \frac{225}{289}\\ \cos \widehat{E} = \frac{15}{17}[/tex]
On a aussi :
[tex]\tan \widehat{E} = \frac{\sin\widehat{E}}{\cos \widehat{E}} = \frac{\frac{8}{17}}{\cos \widehat{E}} = \frac{8}{15}\\ \cos\widehat{E} = \frac{15}{17}[/tex]
EX2
On se place dans le triangle rectangle dont deux des côtés sont la moitié du côté de la base et la hauteur de la pyramide.
La tangente de l'angle de la face avec l'horizontale est de :
[tex]\frac{21{,}6}{\frac{35{,}4}{2}} = \frac{21{,}6}{17{,}7}\\ \alpha \approx 51 \char23[/tex]
Donc, l'angle formé par une face et l'horizontale est d'environ 51°.
Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Merci d'utiliser Laurentvidal.fr. Continuez à nous rendre visite pour trouver des réponses à vos questions.