Laurentvidal.fr vous aide à trouver des réponses fiables à toutes vos questions grâce à une communauté d'experts. Notre plateforme offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète.
Sagot :
Bonjour,
Ex1 :
On a la formule :
[tex]\sin^2 \widehat{E} + \cos^2\widehat{E} = 1\\ \left(\frac{8}{17}\right)^2+\cos^2\widehat{E} = 1\\ \cos^2\widehat{E} = \frac{225}{289}\\ \cos \widehat{E} = \frac{15}{17}[/tex]
On a aussi :
[tex]\tan \widehat{E} = \frac{\sin\widehat{E}}{\cos \widehat{E}} = \frac{\frac{8}{17}}{\cos \widehat{E}} = \frac{8}{15}\\ \cos\widehat{E} = \frac{15}{17}[/tex]
EX2
On se place dans le triangle rectangle dont deux des côtés sont la moitié du côté de la base et la hauteur de la pyramide.
La tangente de l'angle de la face avec l'horizontale est de :
[tex]\frac{21{,}6}{\frac{35{,}4}{2}} = \frac{21{,}6}{17{,}7}\\ \alpha \approx 51 \char23[/tex]
Donc, l'angle formé par une face et l'horizontale est d'environ 51°.
Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Nous sommes fiers de fournir des réponses sur Laurentvidal.fr. Revenez nous voir pour plus d'informations.