Bienvenue sur Laurentvidal.fr, où vous pouvez obtenir des réponses fiables et rapides grâce à nos experts. Découvrez des réponses détaillées à vos questions grâce à un vaste réseau de professionnels sur notre plateforme de questions-réponses complète. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.

Bonjour voici mon Dm de math, niveau TERMINALE S, en piece jointe, pouvez vous m'aider svp

merci d'avance



Bonjour Voici Mon Dm De Math Niveau TERMINALE S En Piece Jointe Pouvez Vous Maider Svp Merci Davance class=
Bonjour Voici Mon Dm De Math Niveau TERMINALE S En Piece Jointe Pouvez Vous Maider Svp Merci Davance class=
Bonjour Voici Mon Dm De Math Niveau TERMINALE S En Piece Jointe Pouvez Vous Maider Svp Merci Davance class=

Sagot :

Exo105:

1) a) 0 < x < 1
          1 < 1 + x^n < 2
         0 < ln(1 + x^n) < ln(2)
         0 < In < ln(2)
b) x^n > x^(n+1)
     ln(1 + x^n) > ln(1 + x^(n+1))
                 In > I(n+1)
        (In) est decroissante
c) (In) deroissante et minoree par 0
       alors elle converge
2) a) g'(x) = 1/(1+x) -1 = -x/(1+x) < 0 
    donc g est decroissante sur [0;+oo[
b) g(0) = 0 alors pour tut x de [0;+oo[, g(x) <= 0
c) pour tout n dans R* et pour tout x de [0;+oo[, on a
                                 x^n >= 0
    donc g(x^n) <= 0
    par suite ln(1 + x^n) - x^n <= 0
3) In <= [x^(n+1) /(n+1)]
     0 <= In <= 1/(n+1)
     or 1/(n+1) converge vers 0, donc (In) converge aussi vers 0.