Laurentvidal.fr est là pour vous fournir des réponses précises à toutes vos questions avec l'aide de notre communauté experte. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués. Expérimentez la commodité de trouver des réponses précises à vos questions grâce à une communauté dévouée d'experts.

Bonjour, pouvez vous m'aider s'il vous plaît ! Merci d'avance

Bonjour Pouvez Vous Maider Sil Vous Plaît Merci Davance class=

Sagot :

a. On étudie le signe de cette fonction. On sait que 2x-4 > 0 car c'est  le dénominateur. On cherche donc pour quelles valeurs de x, (-x+3)(x²+1) = 0.

Soit -x+3 = 0 et x=3

Soit x²+1 = 0 et x² = -1 IMPOSSIBLE

Donc pour x=3 la fonction est égale à 0, on construit le tableau de signe et on voit quand est-ce que la fonction est inférieur ou égale à 0 : Solution pour tout x compris entre 3 et plus l'infini.

 

b. On fait de meme, on cherche quand est-ce que (2x+5)(x-1) = 0

Soit 2x+5 = 0 et x=-5/2

Soit x-1 = 0 et x=1

On a donc deux solutions pour laquelle la fonction s'annule : -5/2 et 1

On construit le tableau de signe et on voit que la solution est pour tout x compris moins l'infini -5/2 et 1 plus l'infini.

 

océane a faux: c'est pas parceque 2x-4 est le dénominateur que c'est strictement positif, pour une lycéenne c'est intolérable d'écrire ça mais bon c'est peut être une grosse étourderie^^

la valeur interdite est 2

ce qu'elle a marqué après est juste mais 2x-4>0 ∀ x ∈ ]2;+∞[   et 2x-4<0 ∀ x ∈ ]-∞;2[ 

donc les solutions sont S=]-∞;2[ [tex]\cup[/tex] [3;+∞[

 

 

c) x²-4>0 ∀ x ∈ [-∞;-2[ [tex]\cup[/tex] ]2;+∞] (les valeurs interdites sont 2 et -2 car 2²-4=(-2)²-4=0)

   x-1≥0 sur [1;+∞[ et  2x+5≥0 sur [-5/2;+∞[

 

donc les solutions sont S=[-∞;-5/2] [tex]\cup[/tex] ]-2;1] [tex]\cup[/tex] ]2;+∞[

 

 

Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et des informations de nos experts.