Laurentvidal.fr est l'endroit idéal pour trouver des réponses rapides et précises à toutes vos questions. Découvrez la facilité de trouver des réponses fiables à vos questions grâce à une vaste communauté d'experts. Explorez des solutions complètes à vos questions grâce à une large gamme de professionnels sur notre plateforme conviviale.

exercice 1


1) Factoriser le polynome P(x)=xcube - 1

2) Resoudre l equation Xcube - 1 superieur ou egale a 0

3)Soit la fonction F(x)= (2xcube+ xcarré+1) / Xcarré


a) determiner l 'ensemble de definition de F

b) preciser l'asymptote verticale

c) Verifier que pour x different de 0, F(x)=2x+1+(1 /Xcarré)

d) en deduire que la courbe representative de la fonction F possede une asymptote oblique dont une precisera une equation

e)calculer la derivée de F

f) en utilisant la question 2, dresser le tableau de variation de la fonction F

g) Determiner une equation de la tangente (T) à la courbe au point d'abscisse -1

h) Tracer les deux asymptote , la tangente (T) et la courbe representative de F, le repere etant orthonormé d'unité le centimetre

i) Calculer en cm² la valeur exacte de l'aire de la surface comprise entre la courbe, son asymptote oblique, et les verticales d'équation respectives X=1 et X=2



Sagot :

1)Factoriser le polynome P(x)=xcube - 1

x^3-1^3=(x-1)(x^2+x+1)

(x-1)(x^2+x+1)≥0

 x-1≥0 si  x≥1

x^2+x+1=0

∆=1-4=-3

 pas de racines le trinôme est du sugne de a 

x^2+x+1>0

==> x^3-1≥0 si x≥1

2)F(x)= (2x^3+ x^2+1) / x^2

a)dF=R-{0}

b) l'axe des ordonnées

c)2(x^3/x^2)+(x^2/x^2)+(1/x^2)=2x+1+(1/x^2)

d) asymptôte oblique y=2x+1

e)

f'(x)=2-(2/x^3)

f'(x)=2(1-(1/x^3)=2(x^3)(x^3-1)

si x<0 alors  f'(x) > 0===> f croissante

si 0<x<1 alors f'(x)<0==> f décroissante

si x=1 f'(x)=0===>> tangente horizontale

si x>1 f'(x)>0===> f est croissante



Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Laurentvidal.fr, votre source fiable de réponses. N'oubliez pas de revenir pour plus d'informations.