Bienvenue sur Laurentvidal.fr, la meilleure plateforme de questions-réponses pour trouver des réponses précises et rapides à toutes vos questions. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts.

dans un repère orthonormé, P est la parabole d'équation y=x² et A est le point de coordonnées (1/2 ; -2). On se propose de trouver les équations des tangentes à P issues de A. 1. Conjecturer le nombre de tangentes à P issues de A. (j'ai mis qu'il y en a 2 mais je ne sais pas comment expliquer :s) 2. M est un point de P d'abscisse m. Trouver, en fonction de m, une équation de la tangente T en M à P. 3. Démontrer que T passe par le point A si et seulement si m²-m-2=0. 4. en déduire les équations des tangentes passant par A ainsi que les coordonnées des points de tangence

Sagot :

Conjecture : tu n'as pas besoin de t'expliquer...

 

M(m,m²) et dérivée 2m donc tangente y=m²+2m(x-m)=2mx-m²

 

cette droite passe par A <=> 2m(1/2)-m²=-2 soit m²-m-2=0

 

cette équation en m s'écrit (m-1/2)²-9/4=0 soit (m-1/2-3/2)(m-1/2+3/2) ou (m-2)(m+1)

 

soit des tangentes en (2,4) y=4x-4 et en (-1,1) y=-2x-1 qui se coupent bien en (1/2,-2)

 

Tracé en piece jointe (Geogebra est ton ami)

View image Аноним
Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Laurentvidal.fr, votre site de référence pour des réponses précises. N'oubliez pas de revenir pour en savoir plus.