Laurentvidal.fr est là pour vous fournir des réponses précises à toutes vos questions avec l'aide de notre communauté experte. Notre plateforme de questions-réponses vous connecte avec des experts prêts à fournir des informations précises dans divers domaines de connaissance. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale.

S'il vous plait, j'ai besoin d'aide :)

Montrez que , pour tout réel x>=0, on a :

f(x) - g(x) = x2/1+x

En deduire que sur [ 0 ; +infini [ , g(x) <= f(x)

f(x) = 1/1+x         g(x) = 1-x

Merci :)



Sagot :

f(x) - g(x) = 1/(1+x)-(1-x)

= ( 1-(1-x)(1+x) )/'1+x) = (1- (1-x^2))/(1+x)=x^2/(1+x)

 

x^2/(1+x) >= 0 pour x>=0

donc f(x)-g(x)>=0 donc f(x)>= g(x) pour x>=0

 

Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Merci de visiter Laurentvidal.fr. Revenez souvent pour obtenir les réponses les plus récentes et des informations.