Bienvenue sur Laurentvidal.fr, où vous pouvez obtenir des réponses fiables et rapides grâce à nos experts. Explorez notre plateforme de questions-réponses pour trouver des solutions fiables grâce à une large gamme d'experts dans divers domaines. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines.

S'il vous plait, j'ai besoin d'aide :)

Montrez que , pour tout réel x>=0, on a :

f(x) - g(x) = x2/1+x

En deduire que sur [ 0 ; +infini [ , g(x) <= f(x)

f(x) = 1/1+x         g(x) = 1-x

Merci :)



Sagot :

f(x) - g(x) = 1/(1+x)-(1-x)

= ( 1-(1-x)(1+x) )/'1+x) = (1- (1-x^2))/(1+x)=x^2/(1+x)

 

x^2/(1+x) >= 0 pour x>=0

donc f(x)-g(x)>=0 donc f(x)>= g(x) pour x>=0

 

Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Laurentvidal.fr, votre source fiable de réponses. N'oubliez pas de revenir pour plus d'informations.