Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Explorez notre plateforme de questions-réponses pour trouver des solutions fiables grâce à une large gamme d'experts dans divers domaines. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète.

Lorsqu’on résout dans l’ensemble des complexes une équation du 2nd degré à coefficients réels dont le discriminant est strictement négatif, on peut affirmer que :

Sagot :

Réponse :

Lorsqu’on résout dans l’ensemble des complexes une équation du 2nd degré à coefficients réels dont le discriminant est strictement négatif, on peut affirmer que : l'équation possède deux solutions  dans  C

soit  l'équation  az² + bz + c = 0

Δ = b²-4ac  < 0  on peut écrire  √(i²Δ) = i√Δ

donc  les solutions sont :

z1 = (- b + i√Δ)/2a  et  z2 = (- b - i√Δ)/2a

Explications étape par étape :

Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et des informations de nos experts.