Obtenez les meilleures solutions à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Explorez des réponses détaillées à vos questions de la part d'une communauté d'experts dans divers domaines. Trouvez des solutions détaillées à vos questions grâce à une large gamme d'experts sur notre plateforme conviviale de questions-réponses.

Dans un triangle rectangle, un secteur angulaire
aigu est le double de l'autre. Quelle est sa mesure ?


Sagot :

Réponse :

Explications étape par étape :

Bonjour
La somme des deux angles aigus d'un triangle rectangle est égal à 90°.
soit x la valeur du plus petit angle aigu
on a x + 2x = 90
       3x = 90
         x = 90/3
         x = 30°
La valeur des deux angles aigus est 30° et 60°

Réponse:

Dans un triangle rectangle, les angles aigus sont les angles autres que l'angle droit, chacun mesurant moins de 90 degrés. Soit \( \theta \) la mesure de l'un des angles aigus.

D'après le problème, un angle aigu est le double de l'autre. Donc, si \( \theta \) est la mesure de l'un des angles aigus, l'autre angle aigu mesure \( 2\theta \).

La somme des angles d'un triangle est toujours égale à 180 degrés. Ainsi, dans un triangle rectangle, où un des angles est de 90 degrés, nous avons:

\[

90^\circ + \theta + 2\theta = 180^\circ

\]

Regroupons les termes contenant \( \theta \):

\[

90^\circ + 3\theta = 180^\circ

\]

Ensuite, isolons \( 3\theta \):

\[

3\theta = 180^\circ - 90^\circ

\]

\[

3\theta = 90^\circ

\]

Divisons maintenant par 3 pour trouver \( \theta \):

\[

\theta = \frac{90^\circ}{3} = 30^\circ

\]

Donc, l'un des angles aigus mesure \( 30^\circ \).

Vérifions la mesure de l'autre angle aigu qui est le double de \( 30^\circ \):

\[

2 \times 30^\circ = 60^\circ

\]

Effectuons la vérification en calculant la somme des angles du triangle:

\[

90^\circ + 30^\circ + 60^\circ = 180^\circ

\]

La vérification est correcte. Ainsi, l'angle aigu recherché, qui est le double de l'autre angle aigu dans le triangle rectangle donné, mesure \( \boxed{60^\circ} \).

Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Nous sommes ravis de répondre à vos questions sur Laurentvidal.fr. N'oubliez pas de revenir pour en savoir plus.