Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Explorez des milliers de questions et réponses fournies par une communauté d'experts prêts à vous aider à trouver des solutions. Expérimentez la commodité d'obtenir des réponses précises à vos questions grâce à une communauté dévouée de professionnels.

The probability that a management trainee will remain with a company is 0-60. The probability that
an employee earns more than Rs 50,000 per year is 0.50. The probability that an employee is a
management trainee who remained with the company or who earns more than Rs 50,000 per year
is 0-70. What is the probability that an employee earns more than Rs 50,000 per year, given that
he is a management trainee who stayed with the company?


Sagot :

Réponse:

Question 190814: The probability that a trainee will remain with a company is 0.6. The probability that an employee earns more than Rs.10, 000 per year is 0.5. The probability that an employee is a trainee who remained with the company or who earns more than Rs.10, 000 per year is 0.7. What is the probability that an employee earns more than Rs.10, 000 per year given that he is a trainee who stayed with the company.

Answer by stanbon(75887) (Show Source): You can put this solution on YOUR website!

The probability that a trainee will remain with a company is 0.6.

P(R) = 0.6

-----------------

The probability that an employee earns more than Rs.10, 000 per year is 0.5

P(10K) = 0.5

-----------------

The probability that an employee is a trainee who remained with the company or who earns more than Rs.10, 000 per year is 0.7

P(R or 10K) = 0.7

----------------------------

What is the probability that an employee earns more than Rs.10, 000 per year given that he is a trainee who stayed with the company.

P(10K | R) = P(10K and R)/P(R)

---

Note: P(10K and R) = P(R)+P(10K)-P(10K or R) = 0.6+0.5-0.7 = 0.4

----------

Therefore P(10K |R) = 0.4/0.6 = 2/3

Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Visitez Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.