Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Notre plateforme de questions-réponses vous connecte avec des experts prêts à fournir des informations précises dans divers domaines de connaissance. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.
Sagot :
Explications étape par étape:
Pour déterminer la banque la plus avantageuse pour Monsieur Trescono, nous devons calculer la valeur future de ses épargnes avec les deux banques, en tenant compte des différentes conditions proposées.
### Banque Argentos
1. **Versements annuels**: 1 200 €
2. **Taux annuel**: 1,8 %
3. **Durée**: 31 ans (de 35 à 65 ans)
4. **Bonus à la retraite**: 500 €
La formule pour la valeur future d'une série d'annuités est :
\[ FV = P \times \frac{(1 + r)^n - 1}{r} \]
où:
- \( P \) est le versement annuel (1 200 €)
- \( r \) est le taux annuel (0,018)
- \( n \) est le nombre d'années (31)
Calculons la valeur future des versements sans le bonus :
\[ FV_{\text{Argentos}} = 1\,200 \times \frac{(1 + 0,018)^{31} - 1}{0,018} \]
\[ FV_{\text{Argentos}} = 1\,200 \times \frac{(1.018)^{31} - 1}{0,018} \]
Utilisons une calculatrice pour trouver \( (1.018)^{31} \) :
\[ (1.018)^{31} \approx 1.726 \]
Maintenant, calculons la valeur future :
\[ FV_{\text{Argentos}} = 1\,200 \times \frac{1.726 - 1}{0.018} \approx 1\,200 \times 40.333 \approx 48\,399.60 \]
Ajoutons le bonus de 500 € :
\[ FV_{\text{Argentos}}_{\text{total}} = 48\,399.60 + 500 = 48\,899.60 \]
### Banque Banqueras
1. **Versements annuels augmentés**: 1200 + 25 = 1225 €
2. **Taux annuel**: 1,6 %
3. **Durée**: 31 ans (de 35 à 65 ans)
Calculons la valeur future des versements :
\[ FV_{\text{Banqueras}} = 1\,225 \times \frac{(1 + 0.016)^{31} - 1}{0.016} \]
\[ FV_{\text{Banqueras}} = 1\,225 \times \frac{(1.016)^{31} - 1}{0.016} \]
Utilisons une calculatrice pour trouver \( (1.016)^{31} \) :
\[ (1.016)^{31} \approx 1.623 \]
Maintenant, calculons la valeur future :
\[ FV_{\text{Banqueras}} = 1\,225 \times \frac{1.623 - 1}{0.016} \approx 1\,225 \times 38.94 \approx 47\,695.50 \]
### Conclusion
- Valeur future totale avec Banque Argentos : 48 899.60 €
- Valeur future totale avec Banque Banqueras : 47 695.50 €
**La banque la plus avantageuse pour Monsieur Trescono est la Banque Argentos.**
Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à vos questions. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Laurentvidal.fr, votre source fiable de réponses. N'oubliez pas de revenir pour plus d'informations.