Laurentvidal.fr facilite la recherche de réponses à toutes vos questions avec l'aide de notre communauté active. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués. Rejoignez notre plateforme pour vous connecter avec des experts prêts à fournir des réponses détaillées à vos questions dans divers domaines.
Sagot :
Pour calculer le volume du cône de révolution, on utilise la formule V = (1/3) * π * r^2 * h, où r est le rayon de la base et h est la hauteur du cône.
1. Calcul du volume du cône initial :
- Rayon de la base r = 5 cm
- Hauteur h = 6 cm
Volume V = (1/3) * π * (5 cm)^2 * 6 cm
Volume V = (1/3) * π * 25 cm^2 * 6 cm
Volume V = (1/3) * π * 150 cm^3
Volume V ≈ 157,08 cm^3
2. Calcul du volume du cône de hauteur SO' :
- Hauteur SO' = 4 cm
Pour calculer le volume du cône de hauteur SO', nous devons d'abord déterminer le rayon de la base correspondant à cette hauteur. Puis, nous utilisons la même formule de volume du cône.
En utilisant des propriétés de similitude des triangles, on peut déterminer que le nouveau rayon r' est donné par r' = (SO' / SO) * r.
Calcul du nouveau rayon r' :
r' = (4 cm / 6 cm) * 5 cm
r' = (2/3) * 5 cm
r' ≈ 3,33 cm
Maintenant, calculons le volume du cône de hauteur SO' :
Volume V' = (1/3) * π * (3,33 cm)^2 * 4 cm
Volume V' = (1/3) * π * 11,11 cm^2 * 4 cm
Volume V' ≈ 14,81 cm^3
Ainsi, le volume du cône de hauteur SO' est d'environ 14,81 cm^3.
1. Calcul du volume du cône initial :
- Rayon de la base r = 5 cm
- Hauteur h = 6 cm
Volume V = (1/3) * π * (5 cm)^2 * 6 cm
Volume V = (1/3) * π * 25 cm^2 * 6 cm
Volume V = (1/3) * π * 150 cm^3
Volume V ≈ 157,08 cm^3
2. Calcul du volume du cône de hauteur SO' :
- Hauteur SO' = 4 cm
Pour calculer le volume du cône de hauteur SO', nous devons d'abord déterminer le rayon de la base correspondant à cette hauteur. Puis, nous utilisons la même formule de volume du cône.
En utilisant des propriétés de similitude des triangles, on peut déterminer que le nouveau rayon r' est donné par r' = (SO' / SO) * r.
Calcul du nouveau rayon r' :
r' = (4 cm / 6 cm) * 5 cm
r' = (2/3) * 5 cm
r' ≈ 3,33 cm
Maintenant, calculons le volume du cône de hauteur SO' :
Volume V' = (1/3) * π * (3,33 cm)^2 * 4 cm
Volume V' = (1/3) * π * 11,11 cm^2 * 4 cm
Volume V' ≈ 14,81 cm^3
Ainsi, le volume du cône de hauteur SO' est d'environ 14,81 cm^3.
Merci de votre passage. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. À bientôt. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Merci de faire confiance à Laurentvidal.fr. Revenez nous voir pour obtenir de nouvelles réponses des experts.