Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme. Notre plateforme offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés.
Sagot :
Réponse :
Bonsoir,
Explications étape par étape :
[tex]M^n=P*D^n*P^{-1}\\\\avec\\\\M=\begin{bmatrix}0 & 2 \\-1 & 3 \end{bmatrix}\\\\P=\begin{bmatrix}2 & 1 \\1 & 3 \end{bmatrix}\\\\P^{-1}=\begin{bmatrix}1 & -1 \\-1 & 2 \end{bmatrix}\\\\\\\boxed{D^n=\begin{bmatrix}1^n & 0 \\0 & 2^n \end{bmatrix}}[/tex]
Réponse :
Explications étape par étape :
Bonjour,
La base {(2;1)(1;1)} vous donne la matrice de passage :
P = [tex]\left[\begin{array}{ccc}2&1\\1&1\end{array}\right][/tex]
et D = [tex]\left[\begin{array}{ccc}1&0\\0&2\end{array}\right][/tex] ( polynôme caractéristique (λ−2)(λ−1) )
M =P.D.P⁻¹ d'où M^n = P.D^n.P⁻¹ ( voir cours si nécessaire )
( d'où l'intérêt de diagonaliser, bien moins de calculs !)
D^n = [tex]\left[\begin{array}{ccc}1&0\\0&2^n\end{array}\right][/tex] et P⁻¹ = [tex]\left[\begin{array}{ccc}1&-1\\-1&2\end{array}\right][/tex]
Je suppose que vous connaissez la formule pour l'inverse d'une matrice carrée d'ordre 2. ( sinon voir votre cours)
Je vous laisse finir le calcul.
M^n = [tex]\left[\begin{array}{ccc}2&1\\1&1\end{array}\right][/tex] [tex]\left[\begin{array}{ccc}1&0\\0&2^n\end{array}\right][/tex] [tex]\left[\begin{array}{ccc}1&-1\\-1&2\end{array}\right][/tex]
Nous apprécions votre temps. Revenez quand vous voulez pour les informations les plus récentes et des réponses à vos questions. Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Revenez sur Laurentvidal.fr pour obtenir plus de connaissances et de réponses de nos experts.