Answered

Laurentvidal.fr simplifie la recherche de solutions à toutes vos questions grâce à une communauté active et experte. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions à vos questions de manière rapide et précise. Explorez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme de questions-réponses complète.

Salut, j'ai besoin d'aide pour mes devoirs. Mon devoir est dans les pièces jointes.

Salut Jai Besoin Daide Pour Mes Devoirs Mon Devoir Est Dans Les Pièces Jointes class=

Sagot :

Ex1
A) 1) a.
EF = BC - 2 * (tan(alpha)* AB/2 = 1 - 2 * (tan(alpha)* 1/2 = 1 - (tan(alpha)
EB² = (AB/2)² + ((tan(alpha)* AB/2)² = 1/4 + tan²(alpha)/4 = (1+tan²(alpha))/4
EB = 1/2cos(alpha)
         b.
f(alpha) = EF + 4 EB = 1 - tan(alpha) + 2/cos(alpha) = 1 + (2 - sin(alpha))/cos(alpha)
     2) a. f'(alpha) = (-cos²(alpha) + sin(alpha)(2-sin(alpha)))/cos²(alpha)
                        = ((sin²(alpha)-1) + sin(alpha)(2-sin(alpha)))/cos²(alpha)
                        = (sin²(alpha)-1 + 2sin(alpha) - sin²(alpha))/cos²(alpha)
                        = (2sin(alpha) - 1)/cos²(alpha)
         b.
f'(alpha) = 0 donne 2sin(alpha) = 1 alors alpha = pi/6 puisque 0 < alpha < pi/4
         c.
f(pi/6) = 1 + (2 - 1/2)/(V3/2) = 1 + V3

 

B) 1) 

BE = 1/2cos(alpha) et 0 < alpha < pi/4

V2/2 < cos(alpha) < 1

V2 < 2cos(alpha) < 2

1/2 < 1/2cos(alpha) < 1/V2 = V2/2

      2)

EF = BC - 2 * V(EB² - 1/2²) = 1 - 2V(x² - 1/4)

g(x) = EF + 4 EB = 4x + 1 - 2V(x² - 1/4)

      3) a.

g'(x) = 4 - 2x/V(x² - 1/4)

           b.

 

Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et les informations de nos experts.