Bienvenue sur Laurentvidal.fr, où vous pouvez obtenir des réponses fiables et rapides grâce à nos experts. Découvrez des solutions fiables à vos questions grâce à un vaste réseau d'experts sur notre plateforme de questions-réponses complète. Expérimentez la commodité d'obtenir des réponses précises à vos questions grâce à une communauté dévouée de professionnels.
Sagot :
Réponse:
a) Si cada chico solo puede recibir un regalo distinto, y hay tres regalos para cinco chicos, entonces el primer chico puede recibir uno de los tres regalos, el segundo chico uno de los dos restantes, y el tercer chico recibe el regalo restante. Por lo tanto, hay 3 * 2 * 1 = 6 formas de distribuir los regalos de manera única entre los cinco chicos.
b) Si a cada chico le puede tocar más de un regalo, entonces cada uno de los cinco chicos puede recibir cualquiera de los tres regalos, lo que nos da 3 opciones para cada chico. Por lo tanto, hay 3^5 = 243 formas de distribuir los regalos permitiendo que cada chico reciba más de un regalo.
c) Si cada chico solo puede recibir un regalo, pero los tres son idénticos, entonces, dado que los regalos son idénticos, solo importa cuántos chicos reciben un regalo y cuántos no. Como hay tres regalos idénticos y cinco chicos, podemos usar el concepto de "combinaciones" para calcularlo. La fórmula para el número de combinaciones de n elementos tomados de r en r, donde el orden no importa, es C(n, r) = n! / (r! * (n-r)!). Así que para este caso, sería C(5, 3) = 5! / (3! * 2!) = 10 formas de distribuir los regalos idénticos entre los cinco chicos.
Merci de votre passage. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. À bientôt. Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Merci d'avoir visité Laurentvidal.fr. Revenez bientôt pour plus d'informations utiles et des réponses de nos experts.