Bienvenue sur Laurentvidal.fr, le site où vous trouverez des réponses rapides et précises à toutes vos questions. Trouvez des solutions détaillées à vos questions grâce à une large gamme d'experts sur notre plateforme conviviale de questions-réponses. Obtenez des solutions rapides et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.

Exercice 24 (sur la trigonométrie)

TAC est un triangle équilatéral de 6 cm de côté. H est le pied de la hauteur issue de T.

a)Quelle est la mesure de l’angle TAC ?

b)Calculer la longueur TH, arrondie au dixième de cm près.


Sagot :

Explications étape par étape:

Pour résoudre cet exercice sur la trigonométrie concernant le triangle équilatéral TAC, suivons les étape

a) Mesure de l'angle TAC

Dans un triangle équilatéral, tous les angles sont égaux. Puisque la somme des angles d'un triangle est de 180°, chaque angle dans un triangle équilatéral mesure :

\[ \frac{180°}{3} = 60° \]

Donc, la mesure de l'angle TAC est de 60°.

b) Longueur de TH

H est le pied de la hauteur issue de T. Dans un triangle équilatéral, la hauteur divise le triangle en deux triangles rectangles de 30°-60°-90°.

Pour déterminer la longueur TH, on peut utiliser les propriétés des triangles 30°-60°-90°. Dans un tel triangle, les rapports des longueurs des côtés sont :

- Le côté opposé à l'angle de 30° est la moitié de l'hypoténuse.

- Le côté opposé à l'angle de 60° est \(\sqrt{3}/2\) de l'hypoténuse.

Pour notre triangle équilatéral TAC avec chaque côté de 6 cm :

1. La hauteur TH dans le triangle équilatéral divise TAC en deux triangles rectangles identiques.

2. Dans ces triangles rectangles, l'hypoténuse (côté du triangle équilatéral) est de 6 cm.

3. Le côté opposé à l'angle de 30° (qui est AH ou CH) est :

\[ \frac{6}{2} = 3 \, \text{cm} \]

4. Le côté opposé à l'angle de 60° (qui est TH) est :

\[ TH = \frac{\sqrt{3}}{2} \times 6 \]

Calculons cette valeur :

\[ TH = 3\sqrt{3} \, \text{cm} \]

Arrondissons cette valeur au dixième de cm près :

\[ 3\sqrt{3} \approx 3 \times 1.732 = 5.196 \approx 5.2 \, \text{cm} \]

Donc, la longueur TH, arrondie au dixième de cm près, est de 5.2 cm.

Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Visitez toujours Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.