Laurentvidal.fr est le meilleur endroit pour obtenir des réponses fiables et rapides à toutes vos questions. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses.

Exercice 4:
Lou a étudié la vitesse de croissance de son chiot depuis qu'elle l'a adopté.
La taille de son chien, en centimètres, t mois après l'adoption est modélisée par la fonction f définie sur
l'intervalle [0; +oo [par f(t)=-
120 et
et+3
a) Déterminer, selon ce modèle, la hauteur du chiot le jour de son adoption.
360 et
b) Démontrer que pour tout réel t appartenant à l'intervalle [0; +co [, on a : f'(t)=(e+3)
c) Etudier le signe de f'(t) puis en déduire le sens de variation de f sur [0; +oo [.
d) Le chiot est considéré comme adulte lorsque sa taille dépasse un mètre. Déterminer, à l'aide de la table
de valeur de votre calculatrice, combien de mois après son adoption le chiot sera devenu adulte.

Exercice 4Lou A Étudié La Vitesse De Croissance De Son Chiot Depuis Quelle La AdoptéLa Taille De Son Chien En Centimètres T Mois Après Ladoption Est Modélisée P class=

Sagot :

Bonjour,

1) on a f(0) = [tex]\frac{120e^0}{e^0+3} =\frac{120}{4}= 30[/tex] cm

2) Formule du cours à connaitre :

[tex]\boxed{f'(\frac{u}{v})=\frac{u'v-uv'}{v^2}}[/tex]

Ici on a [tex]u = 120e^t \ \ \ \ \ \ \ \ \ u'=120e^t[/tex]

            [tex]v = e^t+3 \ \ \ \ \ \ \ \ \ v'=e^t[/tex]

Application numérique :

[tex]f'(t) = \frac{120e^t \times (e^t+3)-120e^t \times e^t}{(e^t+3)^2}[/tex]

[tex]\Leftrightarrow f'(t) = \frac{120e^{2t}+360e^t-120e^{2t}}{(e^t+3)^2}[/tex]

[tex]\Leftrightarrow f'(t) = \frac{360e^t}{(e^t+3)^2}[/tex]  

3) On a ([tex]e^t +3[/tex])² > 0 puisque un carré est toujours positif ou nul et que e^t > 0

on a [tex]360e^t[/tex] > puisque e^t > 0

Donc comme f'(x) > 0 alors f est croissante sur [0 ; +∞ [

4) On sait que 1 m = 100 cm  

On pose et on résout l'équation :

[tex]\frac{120e^t}{e^t+3} = 100[/tex] [tex]\Leftrightarrow 120e^t = 100(e^t + 3) \Leftrightarrow 120e^t = 100e^t + 300[/tex]

                                                      [tex]\Leftrightarrow 20e^t = 300[/tex]

                                                      [tex]\Leftrightarrow e^t = \frac{300}{20} = 15[/tex]

                                                     [tex]\Leftrightarrow ln(e^t) = t = ln(15)[/tex]

Or ln(15) ≈ 2,708 ⇒ donc au bout de 3 mois

Nous apprécions votre visite. Nous espérons que les réponses trouvées vous ont été bénéfiques. N'hésitez pas à revenir pour plus d'informations. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Merci de visiter Laurentvidal.fr. Revenez souvent pour obtenir les réponses les plus récentes et des informations.