Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la meilleure plateforme de Q&R. Explorez des milliers de questions et réponses fournies par une communauté d'experts prêts à vous aider à trouver des solutions. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines.

Bonjour, j'ai une question de spe maths, 1ere sur le nombre derive.
svp

Bonjour Jai Une Question De Spe Maths 1ere Sur Le Nombre Derive Svp class=
Bonjour Jai Une Question De Spe Maths 1ere Sur Le Nombre Derive Svp class=

Sagot :

Réponse :

Explications étape par étape :

1) On applique la formule du taux d'accroissement entre 0 et 0+h

[tex]T(h)=\frac{k(0+h)k(0)}{h} =\frac{\sqrt{(1+h)}-1}{h}[/tex]

2)

[tex]T(h)=\frac{\sqrt{1+h}-1}{h} = \frac{(\sqrt{1+h}-1)(\sqrt{1+h}+1)}{h(\sqrt{1+h}+1)}\\[/tex]

Ici on a juste multiplier en haut et en bas par le conjugué du numerateur.

b)On a :

[tex]T(h) = \frac{(\sqrt{1+h}-1)(\sqrt{1+h}+1)}{h(\sqrt{1+h}+1)} = \frac{(\sqrt{1+h)}^2-(1^2)}{h(\sqrt{1+h}+1)} \\T(h)=\frac{1+h-1}{h(\sqrt{1+h}+1)} =\frac{h}{h(\sqrt{1+h}+1)}=\frac{1}{\sqrt{1+h}+1}[/tex]

3)

[tex]\lim_{h \to 0} T(h)=\frac{1}{\sqrt{1+0}+1 }=\frac{1}{2}[/tex]

On en deduit que k est derivable en 0 car la limite en 0 de T(h) est finie et [tex]k'(0)=\frac{1}{2}[/tex]