Obtenez des solutions à vos questions sur Laurentvidal.fr, la plateforme de questions-réponses la plus réactive et fiable. Connectez-vous avec une communauté d'experts prêts à fournir des solutions précises à vos questions de manière rapide et efficace sur notre plateforme conviviale de questions-réponses. Expérimentez la commodité de trouver des réponses précises à vos questions grâce à une communauté dévouée d'experts.
Sagot :
1. a) Le tableau de tous les couples possibles est donné ci-dessus.
b) Il y a 36 couples possibles.
2. La probabilité d'obtenir un couple composé des mêmes chiffres est 6.
3. a) La probabilité d'obtenir une somme égale à 2 est 36.
b) La probabilité d'obtenir une somme égale à 7 est 6.
c) La probabilité d'obtenir une somme égale à 11 est i8.
d) La probabilité d'obtenir une somme au moins égale à 3 est 35/36.
b) Il y a 36 couples possibles.
2. La probabilité d'obtenir un couple composé des mêmes chiffres est 6.
3. a) La probabilité d'obtenir une somme égale à 2 est 36.
b) La probabilité d'obtenir une somme égale à 7 est 6.
c) La probabilité d'obtenir une somme égale à 11 est i8.
d) La probabilité d'obtenir une somme au moins égale à 3 est 35/36.

Réponse :
1a)
Faces Dé rouge 1 2 3 4 5 6
Faces Dé vert 1 1,1 1,2 1,3 1,4 1,5 1,6
2 2,1 2,2 2,3 2,4 2,5 2, 6
3 3,1 3,2 3, 3 3,4 3 ,5 3,6
4 4,1 4,2 4, 3 4,4 4,5 4,6
5 5,1 5,2 5,3 5,4 5,5 5,6
6 6,1 6,2 6,3 6,4 6,5 6,6
b) Il existe 36 couples de chiffres possible que l'on peut obtenir lors d'un lancer.
2) Probabilité d'obtenir un couple composé des mêmes chiffres(soulignés dans le tableau) : [tex]\frac{6}{36}=\frac{1}{6}[/tex]
3)a) il existe qu'une solution (1,1) qui permet d'obtenir une somme égale à 2,donc probabilité = [tex]\frac{1}{36}[/tex]
b) il existe 6 solutions pour obtenir une somme égale à 7: (1,6) (2,5) (3,4) (4,3) (5,2) (6,1) donc probabilité : [tex]\frac{6}{36}=\frac{1}{6}[/tex]
c) il existe 2 solutions pour obtenir une somme égale à 11: (5,6) (6,5)
donc probabilité :[tex]\frac{2}{36}=\frac{1}{18}[/tex]
d) il existe 35 solutions pour obtenir une somme au moins égale à 3, toutes les combinaisons sauf (1,1) donc probabilité : [tex]\frac{35}{36}[/tex]
Nous apprécions votre temps. Revenez quand vous voulez pour les informations les plus récentes et des réponses à vos questions. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Vos questions sont importantes pour nous. Revenez régulièrement sur Laurentvidal.fr pour obtenir plus de réponses.