Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.

114 Factoriser, si possible, les expressions suivantes.
A=4x²-36
C=25x²+4
B=36-9x2
D=x²-49
SVPPP

Sagot :

Bonsoir,

[tex] \\ [/tex]

Nous allons ici devoir faire apparaître ces expressions sous une forme bien connue qui nous permettra de les factoriser à l'aide de l'identité remarquable suivante:

[tex] \Large{\sf (A^2 - B^2 = (A - B)(A + B)}[/tex]

[tex] \\ [/tex]

[tex] \Large{ \boxed{\sf 1}} \\ \sf A = 4x^2 - 36 \\ \\ \sf = 2^2x^2 - 6^2 \\ \\ \sf = (\underbrace{\sf 2x}_{\sf A})^2 - {\underbrace{\sf 6}_{\sf B}}^2 \\ \\ \sf = (2x - 6)(2x + 6) \\ \\ \\ \rightarrow \boxed{\boxed{\sf A =4x^2 -36 = (2x -6)(2x +6) }} [/tex]

[tex] \\ [/tex]

[tex] \Large{ \boxed{\sf 2}} \\ \sf B = 36 - 9x^2 \\ \\ \sf = 6^2 - 3^2x^2 \\ \\ \sf = {\underbrace{\sf 6}_{\sf A}}^2 - {( \underbrace{\sf 3x}_{\sf B})}^2 \\ \\ \sf = (6 - 3x)(6 + 3x) \\ \\ \\ \rightarrow \boxed{\boxed{\sf B = 36 -9x^2 = (6 -3x )(6 +3x) }} [/tex]

[tex] \\ [/tex]

[tex] \Large{ \boxed{\sf 3}} \\ \sf C = 25x^2 + 4 \\ \\ \rightarrow \boxed{\boxed{\sf A \ notre \ niveau, \ on \ ne \ peut \ pas \ factoriser. }} [/tex]

[tex] \\ [/tex]

Je t'explique:

On cherche à faire comme pour les deux expressions précédentes: faire apparaitre une différence de deux carrés.

On aurait alors:

[tex] \sf B = 25x^2 + 4 \\ \\ \sf = 5^2x^2 - (-4) [/tex]

[tex] \\ [/tex]

Et puis STOP! Connais-tu un nombre réel qui, élevé au carré donne un nombre négatif?

Non, donc on ne peut pas factoriser cette expression dans ℝ.

[tex] \\ [/tex]

[tex] \Large{ \boxed{\sf 4}} \\ \sf D = x^2 - 49 \\ \\ \sf = x^2 - 7^2 \\ \\ \sf = {\underbrace{\sf x}_{\sf A}}^2 - {\underbrace{\sf 7}_{\sf B}}^2 \\ \\ \sf = (x - 7)(x + 7) \\ \\ \\ \rightarrow \boxed{\boxed{\sf D = x^2 - 49 = (x -7)(x +7) }} [/tex]

Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci d'utiliser Laurentvidal.fr. Revenez pour obtenir plus de connaissances de nos experts.