Laurentvidal.fr vous aide à trouver des réponses précises à toutes vos questions grâce à une communauté d'experts chevronnés. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.

Bonjour a tous,

Voilà j'ai une question sur un exercice qui me pose problème...

J'ai ici une fonction [tex]f(x) = -x^2+4x-2[/tex] et P sa représentation graphique.
Soit a un réel quelconque; on désigne par A le point d'abscisse a de P .
1) motrer que l'equation réduite de la tangente en  a est [tex]y=(4-2a)x+a^2-2[/tex]
je pense avoir trouvée l'équation réduite de la tangente en A qui est[tex] y = (4-2a)x+a^2-2 [/tex]mais je ne sais pas comment le montrer


Je suis maintenant bloqué sur cet question :

"En déduire le nombre de tangente à P que l'on peut mener à partir du point I(3/2 ; 4) et donner une équation de chacune de ces tangentes. " 

Si quelqu'un pourrais m'aider sa serai formidable car j'ai beau tout essayer rien ne va...



Sagot :

dérivée de f : -2x+4

donc en a, f(a)=-a²+4a-2 et f'(a)=-2a+4 la tangente s'écrit 

y=-a²+4a-2+(-2a+4)(x-a) soit (4-2a)x+2a²-4a-a²+4a-2 :  y=(4-2a)x+a²-2

 

si le point I est sur une tangente, a vérifie que 4=(4-2a)(3/2)+a²-2 soit a²-3a=0 ; a(a-3)=0 ; a=0 ou a=3

les deux droites y=4x-2 et y=-2x+7 passent par I et sont tangentes à P

 

 

Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Nous sommes ravis de répondre à vos questions sur Laurentvidal.fr. N'oubliez pas de revenir pour en savoir plus.