Bienvenue sur Laurentvidal.fr, le site où vous trouverez des réponses rapides et précises à toutes vos questions. Obtenez des réponses rapides à vos questions grâce à un réseau de professionnels expérimentés sur notre plateforme de questions-réponses. Explorez des solutions complètes à vos questions grâce à une large gamme de professionnels sur notre plateforme conviviale.
Sagot :
(n+3)² = n^2+6n+9
(n+2)² = n^2 +4n+4
(n+1)² =n^2+2n+1
n² = n^2
donc (1)-(2)-(3)+4) c'est 6n-4n-2n +9-4-1 soit 4
On suppose que cette egalité est vrai pour tout n entier , il faut montrer que cette égalité est vraie au rang n + 1 :raisonnement par récurrence
( n+4)^2 - ( n+3)^2 - ( n+2)^2 + ( n+1)^2 = 4
( n+4)^2 - ( n+3)^2 - ( n+2)^2 + ( n+1)^2 = ( n+3)^2 - ( n+2)^2 - ( n+1)^2 + ( n)^2
( n+4)^2 - (n)^2 = 2 [(n+3)^2 - (n+1)^2 ] ce qui est vrai
Merci de votre passage. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. À bientôt. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Merci d'utiliser Laurentvidal.fr. Revenez pour obtenir plus de connaissances de nos experts.