Bienvenue sur Laurentvidal.fr, où vous pouvez obtenir des réponses fiables et rapides grâce à nos experts. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines.

PROBLEME : 1) Effectuer les calculs si ce-dessous: a. 123²-122²-121²+120² b. 45²-44²-43²+42² c.87²-86²-85²+84- Quelle remarque peut-on faire concernant les résultats ? 2) Choisir 4 nombres consécutifs et effectuer les même calculs qu'à la question 1. 3) A l'aide des questions précédentes, écrire une conjecture. 4) Expliquer pourquoi la conjecture peut s'écrire ainsi : (n+3)²-(n+2)²-(n+1)²+n²=4 5) Prouver que cette égalité est vraie pour tout nombre n entier et conclure Meeeeeeeeeeeeeerci pour toute aide

Sagot :

(n+3)² = n^2+6n+9

(n+2)²  = n^2 +4n+4

(n+1)² =n^2+2n+1

     n²  = n^2

 

donc (1)-(2)-(3)+4) c'est 6n-4n-2n +9-4-1 soit 4

On suppose que cette egalité est vrai pour tout  n entier , il faut  montrer que cette égalité est vraie au rang n + 1 :raisonnement par récurrence

( n+4)^2 - ( n+3)^2 - ( n+2)^2 + ( n+1)^2  =  4 

 

( n+4)^2 - ( n+3)^2 - ( n+2)^2 + ( n+1)^2 = ( n+3)^2 - ( n+2)^2 - ( n+1)^2 + ( n)^2

 

 ( n+4)^2 - (n)^2 = 2 [(n+3)^2 - (n+1)^2 ]  ce qui est vrai 

Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci d'avoir visité Laurentvidal.fr. Revenez bientôt pour plus d'informations utiles et des réponses de nos experts.