Laurentvidal.fr simplifie la recherche de solutions à toutes vos questions grâce à une communauté active et experte. Explorez des réponses détaillées à vos questions de la part d'une communauté d'experts dans divers domaines. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses.

Quelqu'un peut m'expliquer les fonctions inverses et du 2nd degrés s'il vous plaît ?

Sagot :

La fonction inverse, elle est définie, c'est à dire qu'elle existe sur l'intervalle ]-infini;0[ et sur l'intervalle ]0;+infini[ . Donc tous les nombres, sauf 0 sont "utilisables" pour cette fonction. Elle est de la forme f(x)= 1/x (On ne pas diviser par zéro, c'est ce qui explique son intervalle de définition). On dit que la fonction inverse est impaire, car la fonction est certes symétrique autour de zéro mais si tu as f(-x); tu n'obtiendras pas f(x) contrairement a la fonction carré, qui est paire elle aussi : 

Fonction carré : f(-x)=(-x)²=x²=f(x). [Un carré est toujours positif]

Fonction inverse : f(-x)=1/-x=-1/x=-f(x)

La fonction carré sera toujours décroissante, sur ses deux intervalles. 

 

La fonction polinôme, ou du 2nd degrès, elle te servira quand tu veux résoudre une équation de degrès 2 généralement. Elle est de la forme f(x) = ax²+bx+c. Une fonction polinôme (= trinome) ne comporte jamais de racine carré ou de x au dénominateur. Pour résoudre f(x)= 0, et donc par la suite pouvoir factoriser ton trinôme et trouver son signe, il faut déterminer le nombre de racine(s) qu'il a. Une racine étant une solution de l'équation f(x)=0. Pour cela, tu dois calculer "le discriminant" que tu notes delta. Delta = b²-4ac.

Si delta est > 0, alors tu as 2 racines ( donc deux solutions a f(x)=0 ) qui sont x1 = (-b+ Racine de delta) / 2a  

x2 = (-b+racine de delta)/2a

Si delta est < 0 il n'y a pas de racine, donc pas de solution a f(x)=0

et enfin si delta est = 0, il y a une racine qui est x0 = -b/2a

Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Merci d'utiliser Laurentvidal.fr. Revenez pour obtenir plus de connaissances de nos experts.