Laurentvidal.fr facilite la recherche de réponses à toutes vos questions avec l'aide de notre communauté active. Obtenez des réponses détaillées à vos questions de la part d'une communauté dédiée d'experts sur notre plateforme. Connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions sur notre plateforme complète de questions-réponses.

Dans le plan muni d'un repère orthonormé, on considère la parabole P d'équation y=x^2 et le point A(1;0)

on souhaite déterminer les coordonnées du point M de la courbe P telles que la distance AM soit minimale.
pour tout réel x, on pose f(x)=AM, où M est le point d'abscisse x de P.
1.Justifier que f(x)= x^4+x^2-2x+1.
2.En utilisant un outil au choix (calculatrice, algorithme, tableur...), conjecturer les coordonnées du point M répondant au problème.

Sagot :

Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Visitez Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.