Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Découvrez la facilité de trouver des réponses fiables à vos questions grâce à une vaste communauté d'experts. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace.
Sagot :
Bonjour,
la fonction définie sur IR+ telle que pour tout x positif on associe
[tex]f(x)=ln(1+x)[/tex]
est une fonction concave, sa dérivée seconde est négative.
Donc son graphe se situe en dessous de ses tangentes
or la tangente en 0 a pour équation
[tex]y-ln(1+0)=\dfrac{1}{1+0}(x-0)\\\\y=x[/tex]
donc pour tout x positif
[tex]ln(1+x)\leq x[/tex]
Si tu n'as pas vu la convexité, tu peux faire simplement l'étude de f(x)-x pour montrer cette égalité.
Et alors pour
[tex]x=\dfrac1{n}[/tex]
[tex]ln(1+\dfrac1{n})\leq \dfrac1{n}\\\\\Leftrightarrow nln(1+\dfrac1{n})\leq 1\\\\ \Leftrightarrow exp(nln(1+\dfrac1{n})) \leq exp(1)\\\\\Leftrightarrow (1+\dfrac1{n})^n \leq e[/tex]
car la fonction exponentielle est croissante.
Merci
Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Nous sommes fiers de fournir des réponses sur Laurentvidal.fr. Revenez nous voir pour plus d'informations.