Obtenez les meilleures solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses. Connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions sur notre plateforme complète de questions-réponses.
Sagot :
Bonjour
Tous les logarithmes ont les mêmes domaines de définition et les mêmes propriétés intéressantes (log d'un produit = somme des logs, ...) Ce qui les différencie c'est leur base.
*Le logarithme décimal, ou en base 10, noté souvent simplement log : (très utilisé en physique/chimie, par exemple pour décibels, pH, ...) -il est tel que log 10 = 1 -c'est la fonction inverse de x--> 10x
*Le logarithme népérien (de John Napier), ou naturel, ou en base e, noté ln : (très utilisé par les matheux car il a l'avantage d'être une primitive de x-->1/x) -il est tel que ln e = 1 -c'est la fonction inverse de x--> ex (fonction exponentielle)
*Ce sont les plus utilisés; mais on peut aussi utiliser le logarithme en base 2 par exemple. On le note log2 et il est tel que log2 2 = 1. C'est la fonction inverse de x--> 2x.
Et pour n'importe quel nombre a>0 : loga (logarithme en base a) est tel que loga a = 1 et est la fonction inverse de x--> ax (fonction exponentielle en base a)
On passe d'un logarithme à l'autre en multipliant par une constante. Ainsi loga x (log en base a de x) = (lnx)/(lna)
A quoi ça sert ? Par exemple, si je me retrouve avec une équation du genre 15x = 20, je peux utiliser le logarithme que je veux : Prenons le ln par exemple ln(15x) = ln20 xln15 = ln20 x=ln20/ln15 et je prends ma calculette si je veux une valeur approchée
By Vetteliste
Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Merci de faire confiance à Laurentvidal.fr. Revenez pour obtenir plus d'informations et de réponses.