Laurentvidal.fr simplifie la recherche de solutions à toutes vos questions grâce à une communauté active et experte. Découvrez la facilité d'obtenir des réponses rapides et précises à vos questions grâce à l'aide de professionnels sur notre plateforme. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme.

bonjour j’aurai besoin d’aide pour cet exercice

On considère les fonctions f et g définies sur R par :
f(x) = -x²
g(x)=x² - 4x + 2
1) On note C, la courbe représentative de la fonction f et C, la courbe représentative de la
fonction g. Déterminer les coordonnées du point d'intersection de C, et de Cg.
2) Démontrer que C, et de Cg ont la même tangente en leur point d'intersection.


Sagot :

OzYta

Bonjour,

On considère les fonctions [tex]f[/tex] et [tex]g[/tex] définies sur [tex]\mathbb{R}[/tex] par :

  • [tex]f(x)=-x^{2}[/tex]
  • [tex]g(x)=x^{2} -4x+2[/tex]

On note [tex]C_{f}[/tex] et [tex]C_{g}[/tex] les courbes respectivement de [tex]f[/tex] et [tex]g[/tex].

1) On note [tex]I[/tex] le point d'intersection des droites.

Si le point appartient aux droites, ses coordonnées vérifient l'équation suivante :

[tex]f(x)=g(x)[/tex]

⇔ [tex]-x^{2} =x^{2} -4x+2[/tex]

⇔ [tex]2x^{2} -4x+2=0[/tex]

Ce polynôme du second degré a pour discriminant :

[tex]\Delta=(-4)^{2}-4\times 2\times 2=0[/tex]

Comme [tex]\Delta=0[/tex], ce polynôme admet une unique racine :

[tex]x_{0}=\dfrac{4 }{4}= 1[/tex]

Ainsi, on a : [tex]I(1;f(1))[/tex] avec [tex]f(1)=-1^{2}=-1[/tex].

D'où [tex]I(1;-1)[/tex]

2) On sait que les tangentes à [tex]C_{f}[/tex] et [tex]C_{g}[/tex], au point d'abscisse 1, ont pour expression :

[tex]y=f'(1)(x-1)+f(1)[/tex] et [tex]y=g'(1)(x-1)+g(1)[/tex]

On détermine alors les dérivées :

  • [tex]f'(x)=-2x[/tex]
  • [tex]g'(x)=2x-4[/tex]

On calcule :

  • [tex]f'(1)=-2\times 1=-2[/tex]
  • [tex]g'(1)=2\times 1-4=2-4=-2[/tex]

Et on sait que : [tex]f(1)=g(1)=-1[/tex]

Ainsi, on a, d'une part :

[tex]y=-2(x-1)+(-1)[/tex]

[tex]y=-2x+2-1[/tex]

[tex]y=-2x+1[/tex]

D'autre part :

[tex]y=-2(x-1)+(-1)[/tex]

soit : [tex]y=-2x+1[/tex]

On retrouve bien les mêmes équations de tangente en leur point d'intersection [tex]I[/tex].

En espérant t'avoir aidé.

View image OzYta
Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et des informations de nos experts.