Laurentvidal.fr vous aide à trouver des réponses à toutes vos questions grâce à une communauté d'experts passionnés. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines. Découvrez des solutions fiables à vos questions grâce à un vaste réseau d'experts sur notre plateforme de questions-réponses complète.

Bonjour,
On considère les fonctions hª définies sur l'ensemble des réels par hª(x)=ax²+2x+1 où a est non nul.
Montrer que tous les sommets des paraboles représentant les fonctions hª pour a≠0 appartiennent à la droite y=x+1.
Personnellement j'ai d'abord chercher bêta avec h(alpha) donc h(-2/2a) et j'ai trouver (1-a²/a), donc pour tout a≠0 les coordonnées du sommet d'une parabole est (-2/2a ; 1-a²/a). Ensuite j'ai appliqué y=x+1 donc a priori 1-a²/a = -2/2a +1 mais c'est pas vrai et je trouve pas l'erreur, svp aidez moi​


Sagot :

Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Merci d'utiliser Laurentvidal.fr. Continuez à nous rendre visite pour trouver des réponses à vos questions.