Obtenez les meilleures solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Trouvez des solutions détaillées à vos questions grâce à une large gamme d'experts sur notre plateforme conviviale de questions-réponses. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.

BONJOUR J’AURAIS BESOIN D’AIDE POUR CETTE EXERCICE, j’ai rien compris!!! Merciiiii
Soit (un) la suite définie par uo = 1 et, pour tout entier naturel n, Un+1 = 0.8un + 1.
•Démontrer par récurrence que, pour tout entier naturel n, un = 5-4 x 0.8n".
2. Soit (vn) la suite définie par vo= 1 et, pour tout entier naturel n, Vn+1 = Vne-un,
•Démontrer par récurrence que, pour tout entier naturel n, Vn > 0.
3. Soit (wn) la suite définie par son premier terme wo = -1 et, pour tout entier naturel n par: wn+1 = - 1/2wn².
(a) Démontrer par récurrence que Wn<0 pour tout entier naturel n.
(b) Démontrer par récurrence que Wn < Wn+ 1 pour tout entier naturel n.
•Que peut-on en déduire pour la suite (wn)?
4. On considère la fonction g définie pour tout réel x de [0; 1] par g(x) = x3/4+ 3/8 et
la suite (un) définie par: uo = 0 et, pour tout entier naturel n, un+1 = g(un).
(a) Calculer u₁.
(b) Démontrer que la fonction g est croissante sur l'intervalle [0; 1].
(c) Démontrer par récurrence que, pour tout entier naturel n, on a 0 ≤ un ≤
Un+1 ≤ 1.