Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués sur notre plateforme de questions-réponses.

bonsoir pouvez vous m’aider avec la question 3 4 et 5 merci

On considère la fonction f définie sur R par
f(x) = 2x²-x+ 1 et sa courbe représentative C.

1. Déterminer la valeur de f' (-1) à l'aide de la com-
mande donnant le nombre dérivé de la calculatrice.

2. En admettant que le résultat précédent est bien la
valeur exacte de f'(-1), vérifier que la tangente T à C au
point d'abscisse -1 a pour équation réduite y = -5x-1.

3. Étudier le signe de la fonction g définie sur R par
g(x) = 2x² + 4x + 2.

4. En déduire la position relative de T et de C.

5. Vérifier la réponse précédente en traçant la courbe
Cet la tangente T sur l'écran de la calculatrice.


Sagot :

Réponse :

Explications étape par étape :

3)

Tout d'abord il faut que tu calcules le discriminant avec ses racines ensuite tu  fais le tableau de signe et (variation :pas obligé )

4)

tu fais un tableau de signe de T et de C  et en dessous tu rajoutes une autre ligne pour la position relative  (Si T=+ et C= - : alors T au-dessus de C sur l'intervalle [-l'infini ; x1 ou x2:]  (le plus petit) et ainsi de suite

5)

tu vas dans le menu graph de ta calculatrice tu met les équation des courbe et tu vérifies si T en dessous ou audessus de C

MPower

Réponse :

Bonjour,

1) La dérivée de f(x) est :

[tex]f'(x) = 2 \times 2x - 1 = 4x - 1[/tex]

[tex]Pour \ x = -1[/tex]

[tex]f'(-1) = 4 \times (-1) -1= -5[/tex]

2) La tangente T à C au point d'abscisse [tex]x = -1[/tex] a pour équation [tex]y = f'(-1)(x - (-1)) + f(-1)[/tex]

[tex]f'(-1) = -5[/tex]

[tex]f(-1) = 2 \times (-1)^2 - (-1) +1 = 2 \times 1 + 1 + 1 = 4[/tex]

[tex]T: y = f'(-1)(x - (-1)) + f(-1)\\\\T:y = -5(x + 1) + 4\\\\T: y = -5x - 5 + 4\\\\T : y = -5x -1[/tex]

3)

[tex]f(x) - (-5x - 1) = 2x^2 - x + 1 + 5x + 1 \\\\\Leftrightarrow f(x) - (-5x - 1) = 2x^2 + 4x + 2\\\\\Leftrightarrow g(x) = 2x^2 + 4x + 2[/tex]

[tex]\Delta = b^2 - 4ac\\\\= 4^2 - 4 \times 2 \times 2\\\\= 0 \ \ donc \ g(x) \ admet \ une \ racine \ r\'eelle[/tex]

[tex]x_0 = -\dfrac{b}{2a} = -\dfrac{4}{2 \times 2} = -1[/tex]

Traçons le tableau de signe de g(x) :

[tex]x[/tex]      | [tex]-\infty[/tex]      [tex]-1[/tex]       [tex]+\infty[/tex] |

[tex]g(x)[/tex]  |     [tex]+[/tex]       [tex]0[/tex]        [tex]+[/tex]    |

4) [tex]Donc \ pour \ tout \ x \in \ ]-\infty; -1 [ \ \cup \ ]-1; +\infty [, \ C \ est \ au \ dessus \ de \ T.[/tex]

[tex]Pour \ x = -1,\ C \ est \ s\'ecante \ \`a \ T[/tex]

5) C.f pièce jointe.

View image MPower
View image MPower
Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Merci d'utiliser Laurentvidal.fr. Continuez à nous rendre visite pour trouver des réponses à vos questions.