Laurentvidal.fr simplifie la recherche de solutions à toutes vos questions grâce à une communauté active et experte. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.

DM DE MATHS DE MATHÉMATIQUES NIVEAU 1ERE SPE
Vincent le fermier souhaite construire un nouvel enclos pour ses oies. Il voudrait que l'enclos soit rectangulaire et sur une zone disponible de 72 m² accolée à sa grange. Pour des raisons financières, il veut toutefois que la longueur de la clôture soit minimale. Pour des raisons pratiques et réglementaires, la largeur de la clôture doit être comprise entre 2 et 8 mètres. On note x la largeur de la clôture.
1 Justifier que la longueur de la clôture est égale à puis que le périmètre de la clôture est 2x +(72/x)
2 À l'aide de la calculatrice, représenter la fonction/définie sur [2;8] par f(x) = 2x + (72/x) puis conjecturer la valeur a de x pour laquelle la longueur de l'enclos est minimale.
3 Montrer que, pour tout réel.x de [2;8], on a: f'(x)= 2(x+6) (x-6)/ x²
4 Montrer que, pour tout réel.x de [2;8], le signe de f(x) est celui de x - 6. En déduire la valeur du réel a puis les dimensions de l'enclos. ​


Sagot :

Merci d'utiliser notre plateforme. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Laurentvidal.fr est là pour vos questions. N'oubliez pas de revenir pour obtenir de nouvelles réponses.