Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Découvrez la facilité d'obtenir des réponses rapides et précises à vos questions grâce à l'aide de professionnels sur notre plateforme. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace.

Bonjour j’ai un dm à rendre en maths et je galère, j’ai besoin d’aide svp.. !!!
Merci d’avance..


Lorsqu'une fonction f est dérivable en a, on a :
f(a+h)-f(a)
f'(a) = lim
h
On montre que l'égalité précédente équivaut à :
f(a+h)-f(a) = f'(a)+e(h) avec lime(h) = 0
h
ho
1. En déduire l'égalité :
f(a+h) = f(a)+ f'(a)h+ he(h) avec lim

On montre que l'égalité précédente équivaut à :
f(a+h) - f(a) = f' (a) + e(h) avec lim e(h) = 0
1. En déduire l'égalité:
f(a+h) = f(a)+f'(a)h+ he(h) avec lim e(h) = 0

2. Sur le graphique ci-dessous, justifier les trois quantités indiquées en couleur.


3. En négligeant le terme he(h), on peut écrire une
approximation de f(a+h) pour h proche de 0:
f(a+h)-f(a)+ f'(a)h
On dit que h→ f(a)+ f'(a)h est une « approxima-
tion affine » de f(a+h) lorsque h est proche de 0.
Justifier l'appellation « approximation affine >>.
4. a. Écrire cette approximation affine lorsque f est la
fonction racine carrée en a=1.
b. Application numérique : trouver, sans calculatrice,
une valeur approchée de √1,02 et √0,996.
5. a. Écrire cette approximation affine lorsque f est la
fonction inverse et a = 2.
b. Application numérique : trouver, sans calculatrice,
1
1.
une valeur approchée de
et
2,004
1,992


Bonjour Jai Un Dm À Rendre En Maths Et Je Galère Jai Besoin Daide Svp Merci Davance Lorsquune Fonction F Est Dérivable En A On A Fahfa Fa Lim H On Montre Que Lé class=

Sagot :

Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Vos questions sont importantes pour nous. Revenez régulièrement sur Laurentvidal.fr pour obtenir plus de réponses.